Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 083102    DOI: 10.1088/1674-1056/ac5880
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Dynamic polarizabilities of the clock states of Al+

Yuan-Fei Wei(魏远飞)1,3,4,†, Zhi-Ming Tang(唐志明)2,†, Cheng-Bin Li(李承斌)1,‡, Yang Yang(杨洋)2,§, Ya-Ming Zou(邹亚明)2, Kai-Feng Cui(崔凯枫)1,4, and Xue-Ren Huang(黄学人)1,4,¶
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 Shanghai EBIT Laboratory, Key Laboratory of Nuclear Physics and Ion-Beam Application(MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Key Laboratory of Atom Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  The dynamic polarizabilities of ${\rm 3s}^2\,^1{\rm S}_0$ and ${\rm 3s}{\rm 3p}\,^3{\rm P}_0^{\rm o}$ states of Al$^+$ are calculated using the hybrid configuration interaction and many-body perturbation theory method, and multiconfiguration Dirac-Hartree-Fock method in this work. Five ultraviolet magic wavelengths for the Al$^+$ clock transition ${\rm 3s}^2\,^1{\rm S}_0$-${\rm 3s3p}\,^3{\rm P}_0^{\rm o}$ are predicted. Although the suitable lasers are not available presently, the potential precision measurement on these magic wavelengths for the Al$^+$ clock transition would be used to extract the ratios of several certain transition matrix elements with high accuracy, and then help to improve the precision and reliability of the estimate of the BBR shift of the Al$^+$ clock transition. The differential dynamic polarizabilities at certain wavelengths are evaluated, which are useful to assess the ac Stark shift of the Al$^+$ clock transition frequency and helpful in the clock experiments to suppress the ac Stark shift of the clock transition as possible as it can.
Keywords:  dynamic polarizability      Al+ optical clock  
Received:  04 December 2021      Revised:  04 February 2022      Accepted manuscript online:  25 February 2022
PACS:  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  32.60.+i (Zeeman and Stark effects)  
Fund: The authors would like to thank Professor M. G. Kozlov and Dr. Y. M. Yu for the helpful assistance on the use of CI-MBPT package. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11934014, 11904387, 11704076, and U1732140), the National Key Research and Development Program of China (Grant Nos. 2017YFA0304401 and 2017YFA0304402), and Technical Innovation Program of Hubei Province, China (Grant No. 2018AAA045).
Corresponding Authors:  Cheng-Bin Li, Yang Yang, Xue-Ren Huang     E-mail:  cbli@apm.ac.cn;yangyang@fudan.edu.cn;hxueren@apm.ac.cn

Cite this article: 

Yuan-Fei Wei(魏远飞), Zhi-Ming Tang(唐志明), Cheng-Bin Li(李承斌), Yang Yang(杨洋), Ya-Ming Zou(邹亚明), Kai-Feng Cui(崔凯枫), and Xue-Ren Huang(黄学人) Dynamic polarizabilities of the clock states of Al+ 2022 Chin. Phys. B 31 083102

[1] Derevianko A and Katori H 2011 Rev. Mod. Phys. 83 331
[2] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[3] Safronova M S, Budker D, DeMille D, Jackson-Kimball D F, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008
[4] Kozlov M G, Safronova M S, Crespo López-Urrutia J R and Schmidt P O 2018 Rev. Mod. Phys. 90 045005
[5] Huntemann H, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[6] Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T and Gao K 2016 Phys. Rev. Lett. 116 013001
[7] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[8] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon. 13 714
[9] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[10] Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C and Wineland D J 2005 Science 309 749
[11] Chou C W, Hume D B, Koelemeij J C, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[12] Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B:At. Mol. Opt. Phys. 43 202001
[13] Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502
[14] Shang J J, Cui K F, Cao J, Wang S M, Chao S J, Shu H L and Huang X R 2016 Chin. Phys. Lett. 33 103701
[15] Dalgarno A 1962 Adv. Phys. 11 281
[16] Mitroy J, Zhang J Y, Bromley M W J and Rollin K G 2009 Eur. Phys. J. D 53 15
[17] Kallay M, Nataraj H S, Sahoo B K, Das B P and Visscher L 2011 Phys. Rev. A 83 030503
[18] Safronova M S, Kozlov M G and Clark C W 2011 Phys. Rev. Lett. 107 143006
[19] Yu Y M, Suo B B and Fan H 2013 Phys. Rev. A 88 052518
[20] Rosenband T, Itano W M, Schmidt P O, Hume D B, Koelemeij J C J, Bergquist J C and Wineland D J 2006 Proceedings of the 20th European Frequency and Time Forum, March 27-30, 2006, Braunschweig, Germany, p. 289
[21] Katori H, Takamoto M, Palćhikov V G and Ovsiannikov V G 2003 Phys. Rev. Lett. 91 173005
[22] Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J and Gao K L 2015 Phys. Rev. Lett. 114 223001
[23] Kozlov M G, Porsev S G, Safronova M S and Tupitsyn I I 2015 Comput. Phys. Commun. 195 199
[24] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184
[25] Manakov N L, Ovsiannikov V D and Rapoport L P 1986 Phys. Rep. 141 320
[26] Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249
[27] Olsen J, Roos B O, Jrgensen P and Jensen H J A 1988 J. Chem. Phys. 89 2185
[28] Sturesson L, Jönsson P and Fischer C F 2007 Comput. Phys. Commun. 177 539
[29] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2020 NIST Atomic Spectra Database (ver. 5.8),[Online]. Available:https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD.
[30] Grant I P 1974 J. Phys. B:At. Mol. Opt. Phys. 7 1458
[31] Fischer C F 2009 Phys. Scr. T 2009 014019
[32] Ekman J, Godefroid M R and Hartman H 2014 Atoms 2 215
[33] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 09, Revision B 01, (Gaussian, Inc., Wallingford CT)
[34] Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A 87 042517
[35] Chao S J, Cui K F, Wang S M, Cao J, Shu H L and Huang X R 2019 Chin. Phys. Lett. 36 120601
[1] Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密) and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2021, 30(8): 083102.
[2] Charge disturbance/excitation in the Raman virtual state revealed by ROA signal: A case study of pinane
Ziqi Zhu(祝子祺), Peijie Wang(王培杰), and Guozhen Wu(吴国祯). Chin. Phys. B, 2021, 30(6): 063101.
[3] Calculations of atomic polarizability for beryllium using MCDHF method
Hui Dong(董辉), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), and Gediminas Gaigalas. Chin. Phys. B, 2021, 30(4): 043103.
[4] Finite-field calculation of electric quadrupole moments of 2P3/2, 2D3/2,5/2, and 2F5/2,7/2 states for Yb+ ion
Xi-Tong Guo(郭希同), Yan-Mei Yu(于艳梅), Yong Liu(刘永), Bing-Bing Suo(索兵兵). Chin. Phys. B, 2020, 29(5): 053101.
[5] Analytical expressions of non-relativistic static multipole polarizabilities for hydrogen-like ions
Xuesong Mei(梅雪松), Wanping Zhou(周挽平), Zhenxiang Zhong(钟振祥), Haoxue Qiao(乔豪学). Chin. Phys. B, 2020, 29(4): 043101.
[6] Imaging alignment of rotational state-selected CH3I molecule
Le-Le Song(宋乐乐), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Hong-Tao Sun(孙洪涛), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Dong-Xu Li(李东旭), Wen-Hui Zhu(朱文会), Ya-Nan Sun(孙亚楠), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春). Chin. Phys. B, 2019, 28(2): 023101.
[7] Determination of static dipole polarizabilities of Yb atom
Zhi-Ming Tang(唐志明), Yan-Mei Yu(于艳梅), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(6): 063101.
[8] Optical nonlinearities of tetracarbonyl-chromium triphenyl phosphine complex
M D Zidan, A W Allaf, A Allahham, A AL-Zier. Chin. Phys. B, 2017, 26(4): 044205.
[9] Calculations of the dynamic dipole polarizabilities for the Li+ ion
Yong-Hui Zhang(张永慧), Li-Yan Tang(唐丽艳), Xian-Zhou Zhang(张现周), Ting-Yun Shi(史庭云). Chin. Phys. B, 2016, 25(10): 103101.
[10] Magic wavelengths for the 7s1/2-6d3/2,5/2 transitions in Ra+
Xiao-Mei Wu(吴晓梅), Cheng-Bin Li(李承斌), Yong-Bo Tang(唐永波), Ting-Yun Shi(史庭云). Chin. Phys. B, 2016, 25(9): 093101.
[11] Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study
Qing-Yin Zhang(张庆印), Peng Xie(谢鹏), Xin Wang(王欣), Xue-Wen Yu(于学文), Zhi-Qiang Shi(时志强), Shi-Huai Zhao(赵世怀). Chin. Phys. B, 2016, 25(6): 066102.
[12] Tune-out wavelengths for the alkaline-metal atoms
Wei-Wei Yu(于伟威), Rong-Mei Yu(于荣梅), Yong-Jun Cheng(程勇军) and Ya-Jun Zhou(周雅君). Chin. Phys. B, 2016, 25(2): 023101.
[13] Determination of electrostatic parameters of a coumarin derivative compound C17H13NO3 by x-ray and density functional theory
Youcef Megrouss, Nadia Benhalima, Rawia Bahoussi, Nouredine Boukabcha, Abdelkader Chouaih, Fodil Hamzaoui. Chin. Phys. B, 2015, 24(10): 106103.
[14] Precision calculation of fine structure in helium and Li+
Zhang Pei-Pei (张佩佩), Zhong Zhen-Xiang (钟振祥), Yan Zong-Chao (严宗朝), Shi Ting-Yun (史庭云). Chin. Phys. B, 2015, 24(3): 033101.
[15] Calculations on polarization properties of alkali metal atoms using Dirac-Fock plus core polarization method
Tang Yong-Bo (唐永波), Li Cheng-Bin (李承斌), Qiao Hao-Xue (乔豪学). Chin. Phys. B, 2014, 23(6): 063101.
No Suggested Reading articles found!