|
|
Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system |
Yi-Xuan Shan(单仪萱)1,2, Hui-Lan Yang(杨惠兰)1,2, Hong-Bin Wang(王宏斌)1,2,†, Shuai Zhang(张帅)1,2, Ying Li(李颖)1,2, and Gui-Zhi Xu(徐桂芝)1,2 |
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; 2 Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Hebei University of Technology, Tianjin 300130, China |
|
|
Abstract Astrocytes have a regulatory function on the central nervous system (CNS), especially in the temperature-sensitive hippocampal region. In order to explore the thermosensitive dynamic mechanism of astrocytes in the CNS, we establish a neuron-astrocyte minimum system to analyze the synchronization change characteristics based on the Hodgkin-Huxley model, in which a pyramidal cell and an interneuron are connected by an astrocyte. The temperature range is set as 0 ℃-40 ℃ to juggle between theoretical calculation and the reality of a brain environment. It is shown that the synchronization of thermosensitive neurons exhibits nonlinear behavior with changes in astrocyte parameters. At a temperature range of 0 ℃-18 ℃, the effects of the astrocyte can provide a tremendous influence on neurons in synchronization. We find the existence of a value for inositol triphosphate (IP3) production rate and feedback intensities of astrocytes to neurons, which can ensure the weak synchronization of two neurons. In addition, it is revealed that the regulation of astrocytes to pyramidal cells is more sensitive than that to interneurons. Finally, it is shown that the synchronization and phase transition of neurons depend on the change in Ca2+ concentration at the temperature of weak synchronization. The results in this paper provide some enlightenment on the mechanism of cognitive dysfunction and neurological disorders with astrocytes.
|
Received: 13 October 2021
Revised: 30 December 2021
Accepted manuscript online: 07 January 2022
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
64.70.qj
|
(Dynamics and criticality)
|
|
87.19.L-
|
(Neuroscience)
|
|
87.19.lk
|
(Glia)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51607056, 51737003, and 51877069) and State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology (Grant No. EERI PI2020006). |
Corresponding Authors:
Hong-Bin Wang
E-mail: wanghongbin@hebut.edu.cn
|
Cite this article:
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝) Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system 2022 Chin. Phys. B 31 080507
|
[1] Shu R, Chen W and Xiao J H 2019 Acta Phys. Sin. 68 180503 (in Chinese) [2] Ding X L, Jia B and Li Y Y 2019 Acta Phys. Sin. 68 180502 (in Chinese) [3] Han F, Wang Z J, Fan H and Gong T 2015 Chin. Phys. Lett. 32 040502 (in Chinese) [4] Duan L, Liu C, Zhao L C and Yang Z Y 2020 Acta Phys. Sin. 69 010501 (in Chinese) [5] Zhang D, Shi J Q, Sun Y, Yang X H and Ye L 2019 Acta Phys. Sin. 68 240502 (in Chinese) [6] Wang T, Zhou M Y and Fu Z Q 2020 Chin. Phys. B 29 058901 [7] Yue X L, Xiang Y L and Zhang Y 2019 Acta Phys. Sin. 68 180501 (in Chinese) [8] Shao S L, Wang T, Song C H, Cui E N, Zhao H and Yao C 2019 Acta Phys. Sin. 68 178701 (in Chinese) [9] Zhao W L and Jie Q L 2020 Chin. Phys. B 29 080302 [10] Ouannas A, Khennaoui A A, Momani S, Pham V T and Khazali R E 2020 Chin. Phys. B 29 050504 [11] Chen C, Ding Z X, Li S and Wang L H 2020 Chin. Phys. B 29 040202 [12] Li J H 2016 Chin. Phys. Lett. 33 120501 [13] Sun J C 2016 Chin. Phys. Lett. 33 100503 [14] Wang R, Guo J B, Hui J P, Wang Z, Liu H J, Xu Y N and Liu Y F 2019 Acta Phys. Sin. 68 180701 (in Chinese) [15] Ding P F, Feng X Y and Wu C M 2020 Chin. Phys. B 29 108202 [16] Huang F, Chen H S and Shen C S 2015 Chin. Phys. Lett. 32 118902 [17] Wang Y X, Zhai J Q, Xu W W, Sun G Z and Wu P H 2015 Chin. Phys. Lett. 32 097401 [18] Zhai J Q, Li Y C, Shi J X, Zhou Y, Li X H, Xu W W, Sun G Z and Wu P H 2015 Chin. Phys. Lett. 32 047402 [19] Huang J W, Lv S X, Zhang Z S and Yuan H Q 2020 Chin. Phys. B 29 060505 [20] Araque A, Parpura V, Sanzgiri R P and Haydon P G 1999 Trends Neurosci. 22 208 [21] Du M M, Li J J, Yuan Z X, Fan Y C and Wu Y 2020 Chin. Phys. B 29 038701 [22] Amiri M, Montaseri G and Bahrami F 2011 Biol. Cybern. 105 153 [23] Araque A, Carmignoto G, Haydon P G, Oliet S H R, Robitaille R and Volterra A 2014 Neuron 81 728 [24] Porter J T and McCarthy D K D 1995 Glia 13 101 [25] Nadkarni S and Jung P 2004 Phys. Biol. 1 35 [26] Makovkin S Y, Shkerin I V, Gordleeva S Y and Ivanchenko M V 2020 Chaos Soliton. Fract. 138 109951 [27] Ji Q B, Zhou Y, Yang Z Q and Meng X Y 2015 Chin. Phys. Lett. 32 050501 [28] Nadkarni S and Jung P 2007 Phys. Biol. 4 1 [29] Erkan Y, Saraç Z and Yılmaz E 2019 Nonlinear Dyn. 95 3411 [30] Øyehaug L, Østby I, Lloyd C M, Omholt S W and Einevoll G T 2012 J. Comput. Neurosci. 32 147 [31] Carmen D V, Sverre M S, Ecem A, Evelien V H, Celine D, Slike V, Julie V, Robbrecht P, Mehmet I C, Akira M, Caghan K, Koichi K, Nathalie J Y and Emre Y 2019 Nat. Commun. 10 3830 [32] Kim J A and Connors B W 2012 Front. Cell. Neurosci. 6 27 [33] Feudel U, Neiman A, Pei X, Wojtenek W, Braun H, Huber M and Moss F 2000 Chaos 10 231 [34] Rossi K L, Budzinski R C, Boaretto B R R, Prado T L, Feudel U and Lopes S R 2021 Chaos 31 083121 [35] Budzinski R C, Boaretto B R R, Prado T L and Lopes S R 2019 Chaos Soliton. Fract. 123 35 [36] Xu Y, Liu M H, Zhu Z G and Ma J 2020 Chin. Phys. B 29 098704 [37] DeMaegd M L and Stein W 2020 PLoS Comput. Biol. 16 e1008057 [38] Lu L L, Kirunda J B, Xu Y, Kang W J, Ye R, Zhan X and Jia Y 2018 Eur. Phys. J. Special Top. 227 767 [39] Hyun N G, Hyun K, Oh S and Lee K 2020 Korean J. Physiol. Pharmacol. 24 349 [40] Kitamura M, Ishikawa K, Nei K, Nakajima K, Yamanoha B and Shimizu A 2018 High Pressure Res. 38 348 [41] Leisengang S, Ott D, Gerstberger R, Rummel C and Roth J 2018 Neuroreport 29 1468 [42] Zhang Y H, Liu H, Han Y R, Chen Y F, Zhang S H and Zhan Y 2017 Chin. Phys. Lett. 34 098701 [43] Du M M, Li J J, Wu Y and Yu G Y 2021 Cogn. Neurodyn. [44] Hodgkin A L and Huxley A F 1990 Bull. Math. Biol. 52 25 [45] Fujisaki T, Wakatsuki H, Kudoh M and Shibuki K 1999 Neurosci. Res. 33 307 [46] Postlethwaite M, Hennig M H, Steinert J R, Graham B P and Forsythe I D 2007 J. Physiol. 579 69 [47] Braun H A, Huber M T, Dewald M, Schafer K and Voigt K 1998 Int. J. Bifurcat. Chaos 8 881 [48] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500 [49] Tchaptchet A 2018 Chaos 28 106327 [50] Yu Y Y, Yuan Z X, Fan Y C, Li J J and Wu Y 2020 Neural Plast. 2020 8864246 [51] Amiri M, Bahrami F and Janahmadi M 2012 J. Theor. Biol. 292 60 [52] Li J J, Du M M and Wang R 2016 Int. J. Bifurcat. Chaos 26 1650138 [53] Wang Q Y, Shi X and Lu Q C 2008 Coupling System Synchronized Dynamics (Beijing:Science Press) p. 62 (in Chinese) [54] Budzinski R C, Boaretto B R R, Prado T L and Lopes S R 2019 Commun. Nonlinear Sci. 75 140 [55] Wang J, Ye W J, Liu S Q, Liu B and Jiang X F 2016 Chaos Soliton. Fract. 93 32 [56] Boaretto B R R, Budzinski R C, Prado T L, Kurths J and Lopes S R 2018 Chaos 28 106304 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|