Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080508    DOI: 10.1088/1674-1056/ac6335
GENERAL Prev   Next  

Exponential sine chaotification model for enhancing chaos and its hardware implementation

Rui Wang(王蕊)1, Meng-Yang Li(李孟洋)3, and Hai-Jun Luo(罗海军)1,2,†
1 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China;
2 National Center for Applied Mathematics in Chongqing, Chongqing 401331, China;
3 The University of Chicago, Chicago 60637, United States of America
Abstract  Chaotic systems have been intensively studied for their roles in many applications, such as cryptography, secure communications, nonlinear controls, etc. However, the limited complexity of existing chaotic systems weakens chaos-based practical applications. Designing chaotic maps with high complexity is attractive. This paper proposes the exponential sine chaotification model (ESCM), a method of using the exponential sine function as a nonlinear transform model, to enhance the complexity of chaotic maps. To verify the performance of the ESCM, we firstly demonstrated it through theoretical analysis. Then, to exhibit the high efficiency and usability of ESCM, we applied ESCM to one-dimensional (1D) and multi-dimensional (MD) chaotic systems. The effects were examined by the Lyapunov exponent and it was found that enhanced chaotic maps have much more complicated dynamic behaviors compared to their originals. To validate the simplicity of ESCM in hardware implementation, we simulated three enhanced chaotic maps using a digital signal processor (DSP). To explore the ESCM in practical application, we applied ESCM to image encryption. The results verified that the ESCM can make previous chaos maps competitive for usage in image encryption.
Keywords:  chaotic system      nonlinear system      image encryption      hardware implementation  
Received:  14 December 2021      Revised:  11 February 2022      Accepted manuscript online:  01 April 2022
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51507023), Chongqing Municipal Natural Science Foundation (Grant No. cstc2020jcyjmsxmX0726), and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202100506).
Corresponding Authors:  Hai-Jun Luo     E-mail:  luohaijun@cqnu.edu.cn

Cite this article: 

Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军) Exponential sine chaotification model for enhancing chaos and its hardware implementation 2022 Chin. Phys. B 31 080508

[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Luo A C J 2019 Eur. Phys. J. Spec. Top. 228 1745
[3] Açikkapi M Ş and Özkaynak F 2021 IEEE Access. 9 1482
[4] Shahzadi R, Anwar S M, Qamar F, Ali M, Rodrigues J J P C and Alnowami M 2019 IEEE Access 7 57769
[5] Pappu C S, Carroll T L and Flores B C 2020 IEEE Access 8 48361
[6] Wang J B, Liu C X, Wang Y and Zheng G C 2018 Chin. Phys. B 27 070503
[7] Gamal M Mahmoud, Tarek M Abed-Elhameed and Ahmed A Farghaly 2018 Chin. Phys. B 27
[8] Zhang F F, Liu J X, Wang Z X and Jiang C M 2019 IEEE Access. 7 179320
[9] Yang Z, Yi L L, Ke J X, Zhuge Q B, Yang Y P and Hu W S 2020 J. Lightwave Technol. 38 4648
[10] Folifack Signing V R, Fozin Fonzin T, Kountchou M and Njitacke Z T 2021 Circuits, Syst. Signal Process. 40 4370
[11] Peng Y X, Sun K H and He S B 2020 Chin. Phys. B 29 030502
[12] Abolpour N, Boostani R and Masnadi-Shirazi M A 2021 Iran J. Sci. Technol. Trans. Electr. Eng. 45 721
[13] Ke J X, Yi L L and Hu W S 2019 IEEE Photon. Technol. Lett. 31 1104
[14] Teh J S, Alawida M and You C S 2020 J. Inf. Secur. Appl. 50 102421
[15] Nguyen N, Pham-Nguyen L, Nguyen M B and Kaddoum G 2020 IEEE Access 8 104432
[16] Lazzús J A, Rivera M and López-Caraballo C H 2016 Phys. Lett. A 380 1164
[17] Li D C, Han M and Wang J 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 787
[18] Zheng J and Hu H P 2020 Chin. Phys. B 29 090502
[19] Annovazzi-Lodi V and Aromataris G 2019 IEEE J Quantum Electron. 55 1
[20] Liu L F and Liu Q 2019 IET Optoelectron. 13 94
[21] Luo Y Q, Yu J, Lai W R and Liu L F 2019 Multimed Tools Appl. 78 22023
[22] Huang Y Z, Hu H P, Xie F L and Zheng J 2017 IEEE Photon. J. 10 1
[23] Hua Z Y, Zhou B H and Zhou Y C 2019 IEEE Trans. Ind. Elec tron. 66 1273
[24] Hua Z Y, Zhou B H and Zhou Y C 2018 IEEE Trans. Ind. Electron. 65 2557
[25] Liu L D, Zhang Z L and Chen R J 2019 IEEE Access 7 126450
[26] Carpintero D D and Muzzio J C 2020 Mon. Not. R. Astron. Soc. 495 1608
[27] May R M 1976 Nature 261 459
[28] Hénon M 1976 Commun. Math. Phys. 50 291
[29] Ahmad S and Yue B Z 2012 Chin. Phys. Lett. 29 060501
[30] Hernández Díaz E A, Pérez Meana H M and Silva García V M 2020 IEEE Lat. Am. T. 18 1407
[31] Hu X C, Wei L S, Chen W, Chen Q Q and Guo Y 2020 IEEE Access 8 12452
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[4] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[5] Implementation of an 8-bit bit-slice AES S-box with rapid single flux quantum circuits
Ruo-Ting Yang(杨若婷), Xin-Yi Xue(薛新伊), Shu-Cheng Yang(杨树澄), Xiao-Ping Gao(高小平), Jie Ren(任洁), Wei Yan(严伟), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(9): 098501.
[6] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[7] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[8] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[9] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[10] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[11] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[12] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[13] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[14] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[15] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
No Suggested Reading articles found!