Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077701    DOI: 10.1088/1674-1056/ac3bab
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric

Xiaoting Sun(孙小婷)1,2, Yadong Zhang(张亚东)2, Kunpeng Jia(贾昆鹏)2, Guoliang Tian(田国良)2,3, Jiahan Yu(余嘉晗)2, Jinjuan Xiang(项金娟)2, Ruixia Yang(杨瑞霞)1, Zhenhua Wu(吴振华)2,3,†, and Huaxiang Yin(殷华湘)2,3,‡
1 School of Information Engineering, Hebei University of Technology, Tianjin 300401, China;
2 Key Laboratory of Microelectronics Device and Integrated Technology, Institute of Microelectronics Chinese Academy of Sciences, Beijing 100029, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Since defects such as traps and oxygen vacancies exist in dielectrics, it is difficult to fabricate a high-performance MoS$_{2}$ field-effect transistor (FET) using atomic layer deposition (ALD) Al$_{2}$O$_{3}$ as the gate dielectric layer. In this paper, NH$_{3}$ in situ doping, a process treatment approach during ALD growth of Al$_{2}$O$_{3}$, is used to decrease these defects for better device characteristics. MoS$_{2}$ FET has been well fabricated with this technique and the effect of different NH$_{3}$ in situ doping sequences in the growth cycle has been investigated in detail. Compared with counterparts, those devices with NH$_{3}$ in situ doping demonstrate obvious performance enhancements: $I_{\rm on}/I_{\rm off}$ is improved by one order of magnitude, from $1.33\times 10^{5}$ to $3.56\times 10^{6}$, the threshold voltage shifts from $-0.74 $ V to $-0.12$ V and a small subthreshold swing of 105 mV/dec is achieved. The improved MoS$_{2}$ FET performance is attributed to nitrogen doping by the introduction of NH$_{3}$ during the Al$_{2}$O$_{3}$ ALD growth process, which leads to a reduction in the surface roughness of the dielectric layer and the repair of oxygen vacancies in the Al$_{2}$O$_{3}$ layer. Furthermore, the MoS$_{2}$ FET processed by in situ NH$_{3}$ doping after the Al and O precursor filling cycles demonstrates the best performance; this may be because the final NH$_{3}$ doping after film growth restores more oxygen vacancies to screen more charge scattering in the MoS$_{2}$ channel. The reported method provides a promising way to reduce charge scattering in carrier transport for high-performance MoS$_{2 }$ devices.
Keywords:  MoS2      Al2O3 dielectric      NH3 in-situ doping      oxygen vacancy  
Received:  25 September 2021      Revised:  14 November 2021      Accepted manuscript online:  20 November 2021
PACS:  77.22.Ch (Permittivity (dielectric function))  
  85.30.-z (Semiconductor devices)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774168 and 11764008) and the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences.
Corresponding Authors:  Zhenhua Wu, Huaxiang Yin     E-mail:  wuzhenhua@ime.ac.cn;yinhuangxiang@ime.ac.cn

Cite this article: 

Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘) Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric 2022 Chin. Phys. B 31 077701

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[3] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P and Javey A 2016 Science 354 99
[4] Luo K, Yang W, Pan Y, Yin H, Zhao C and Wu Z 2020 J. Electron. Mater. 49 559
[5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[6] Ma X, Fan Z, Wu J, Jiang X and Chen J 2018 IEEE International Electron Devices Meeting, December 1-5, 2018, San Francisco, USA, p. 24.2.1
[7] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[8] Liu Y, Guo J, Zhu E, Liao L, Lee S, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696
[9] Illarionov Y Y, Smithe K K H, Waltl M, Knobloch T, Pop E and Grasser T 2017 IEEE Electron Dev. Lett. 38 1763
[10] Li W, Zhou J, Cai S, Yu Z, Zhang J, Fang N, Li T, Wu Y, Chen T, Xie X, Ma H, Yan K, Dai N, Wu X, Zhao H, Wang Z, He D, Pan L, Shi Y, Wang P, Chen W, Nagashio K, Duan X and Wang X 2019 Nat. Electron. 2 563
[11] Cho B, Hahm M G, Choi M, Yoon J, Kim A R, Lee Y J, Park S G, Kwon J D, Kim C S, Song M, Jeong Y, Nam K S, Lee S, Yoo T J, Kang C G, Lee B H, Ko H C, Ajayan P M and Kim D H 2015 Sci. Rep. 5 8052
[12] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
[13] Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
[14] Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317
[15] Li Z, Xu J P, Liu L and Zhao X Y 2021 Chin. Phys. B 30 018102
[16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[17] Liu X, Cai Y and Liu Z J 2017 Nanotechnology 28 164004
[18] Bolshakov P, Zhao P, Azcatl A, Hurley P K, Wallace R M and Young C D 2017 Microelectron. Eng. 178 190
[19] Li X, Xiong X, Li T, Li S, Zhang Z and Wu Y 2017 ACS Appl. Mater. Interfaces 9 44602
[20] Zhao X, Xu J, Liu L, Lai P T and Tang W M 2019 IEEE Trans. Electron Dev. 66 4337
[21] Song X, Xu J, Liu L, Lai P T and Tang W M 2019 Appl. Surf. Sci. 481 1028
[22] Chen J Y, Zhao X Y, Liu L and Xu J P 2019 Chin. Phys. B 28 128101
[23] Song X, Xu J, Liu L and Lai P T 2021 Appl. Surf. Sci. 542 148437
[24] Yang H, Li C, Yue L, Wen C, Zhang J and Wu D 2019 IEEE Electron Device Lett. 40 1116
[25] Pan Y, Jia K, Huang K, Wu Z, Bai G, Yu J, Zhang Z, Zhang Q and Yin H 2019 Nanotechnology 30 095202
[26] Song X, Xu J, Liu L, Deng Y, Lai P T and Tang W M 2020 Nanotechnology 31 135206
[27] Kim J H, Park T J, Cho M, Jang J H, Seo M, Na K D, Hwang C S and Won J Y 2009 J. Electrochem. Soc. 156 G48
[28] Umezawa N, Shiraishi K, Ohno T, Watanabe H, Chikyow T, Torii K, Yamabe K, Yamada K, Kitajima H and Arikado T 2005 Appl. Phys. Lett. 86 143507
[29] Touski S B and Hosseini M 2020 Physica E 116 113763
[30] Ma X, Gong Y, Wu J, Li Y and Chen J 2019 Jpn. J. Appl. Phys. 58 110905
[31] Song X, Xu J and Liu L 2020 IEEE Trans. Electron Dev. 67 5196
[32] Lee H S, Park C S and Park H H 2014 Appl. Phys. Lett. 104 191604
[33] Rai A, Valsaraj A, Movva H C P, Roy A, Ghosh R, Sonde S, Kang S, Chang J, Trivedi T, Dey R, Guchhait S, Larentis S, Register L F, Tutuc E and Banerjee S K 2015 Nano Lett. 15 4329
[34] Deng L F, Lai P T, Chen W B, Xu J P, Liu Y R, Choi H W and Che C M 2011 IEEE Electron Device Lett. 32 93
[35] Choi C H, Rhee S J, Jeon T S, Lu N, Sim J H, Clark R, Niwa M and Kwong D L 2002 Digest. International Electron Devices Meeting, December 8-11, 2002, San Francisco, USA, p. 857
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[8] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[9] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[10] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔). Chin. Phys. B, 2022, 31(12): 128502.
[13] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[14] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
[15] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
No Suggested Reading articles found!