CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric |
Xiaoting Sun(孙小婷)1,2, Yadong Zhang(张亚东)2, Kunpeng Jia(贾昆鹏)2, Guoliang Tian(田国良)2,3, Jiahan Yu(余嘉晗)2, Jinjuan Xiang(项金娟)2, Ruixia Yang(杨瑞霞)1, Zhenhua Wu(吴振华)2,3,†, and Huaxiang Yin(殷华湘)2,3,‡ |
1 School of Information Engineering, Hebei University of Technology, Tianjin 300401, China; 2 Key Laboratory of Microelectronics Device and Integrated Technology, Institute of Microelectronics Chinese Academy of Sciences, Beijing 100029, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Since defects such as traps and oxygen vacancies exist in dielectrics, it is difficult to fabricate a high-performance MoS$_{2}$ field-effect transistor (FET) using atomic layer deposition (ALD) Al$_{2}$O$_{3}$ as the gate dielectric layer. In this paper, NH$_{3}$ in situ doping, a process treatment approach during ALD growth of Al$_{2}$O$_{3}$, is used to decrease these defects for better device characteristics. MoS$_{2}$ FET has been well fabricated with this technique and the effect of different NH$_{3}$ in situ doping sequences in the growth cycle has been investigated in detail. Compared with counterparts, those devices with NH$_{3}$ in situ doping demonstrate obvious performance enhancements: $I_{\rm on}/I_{\rm off}$ is improved by one order of magnitude, from $1.33\times 10^{5}$ to $3.56\times 10^{6}$, the threshold voltage shifts from $-0.74 $ V to $-0.12$ V and a small subthreshold swing of 105 mV/dec is achieved. The improved MoS$_{2}$ FET performance is attributed to nitrogen doping by the introduction of NH$_{3}$ during the Al$_{2}$O$_{3}$ ALD growth process, which leads to a reduction in the surface roughness of the dielectric layer and the repair of oxygen vacancies in the Al$_{2}$O$_{3}$ layer. Furthermore, the MoS$_{2}$ FET processed by in situ NH$_{3}$ doping after the Al and O precursor filling cycles demonstrates the best performance; this may be because the final NH$_{3}$ doping after film growth restores more oxygen vacancies to screen more charge scattering in the MoS$_{2}$ channel. The reported method provides a promising way to reduce charge scattering in carrier transport for high-performance MoS$_{2 }$ devices.
|
Received: 25 September 2021
Revised: 14 November 2021
Accepted manuscript online: 20 November 2021
|
PACS:
|
77.22.Ch
|
(Permittivity (dielectric function))
|
|
85.30.-z
|
(Semiconductor devices)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774168 and 11764008) and the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences. |
Corresponding Authors:
Zhenhua Wu, Huaxiang Yin
E-mail: wuzhenhua@ime.ac.cn;yinhuangxiang@ime.ac.cn
|
Cite this article:
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘) Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric 2022 Chin. Phys. B 31 077701
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351 [3] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P and Javey A 2016 Science 354 99 [4] Luo K, Yang W, Pan Y, Yin H, Zhao C and Wu Z 2020 J. Electron. Mater. 49 559 [5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [6] Ma X, Fan Z, Wu J, Jiang X and Chen J 2018 IEEE International Electron Devices Meeting, December 1-5, 2018, San Francisco, USA, p. 24.2.1 [7] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [8] Liu Y, Guo J, Zhu E, Liao L, Lee S, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696 [9] Illarionov Y Y, Smithe K K H, Waltl M, Knobloch T, Pop E and Grasser T 2017 IEEE Electron Dev. Lett. 38 1763 [10] Li W, Zhou J, Cai S, Yu Z, Zhang J, Fang N, Li T, Wu Y, Chen T, Xie X, Ma H, Yan K, Dai N, Wu X, Zhao H, Wang Z, He D, Pan L, Shi Y, Wang P, Chen W, Nagashio K, Duan X and Wang X 2019 Nat. Electron. 2 563 [11] Cho B, Hahm M G, Choi M, Yoon J, Kim A R, Lee Y J, Park S G, Kwon J D, Kim C S, Song M, Jeong Y, Nam K S, Lee S, Yoo T J, Kang C G, Lee B H, Ko H C, Ajayan P M and Kim D H 2015 Sci. Rep. 5 8052 [12] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780 [13] Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934 [14] Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317 [15] Li Z, Xu J P, Liu L and Zhao X Y 2021 Chin. Phys. B 30 018102 [16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [17] Liu X, Cai Y and Liu Z J 2017 Nanotechnology 28 164004 [18] Bolshakov P, Zhao P, Azcatl A, Hurley P K, Wallace R M and Young C D 2017 Microelectron. Eng. 178 190 [19] Li X, Xiong X, Li T, Li S, Zhang Z and Wu Y 2017 ACS Appl. Mater. Interfaces 9 44602 [20] Zhao X, Xu J, Liu L, Lai P T and Tang W M 2019 IEEE Trans. Electron Dev. 66 4337 [21] Song X, Xu J, Liu L, Lai P T and Tang W M 2019 Appl. Surf. Sci. 481 1028 [22] Chen J Y, Zhao X Y, Liu L and Xu J P 2019 Chin. Phys. B 28 128101 [23] Song X, Xu J, Liu L and Lai P T 2021 Appl. Surf. Sci. 542 148437 [24] Yang H, Li C, Yue L, Wen C, Zhang J and Wu D 2019 IEEE Electron Device Lett. 40 1116 [25] Pan Y, Jia K, Huang K, Wu Z, Bai G, Yu J, Zhang Z, Zhang Q and Yin H 2019 Nanotechnology 30 095202 [26] Song X, Xu J, Liu L, Deng Y, Lai P T and Tang W M 2020 Nanotechnology 31 135206 [27] Kim J H, Park T J, Cho M, Jang J H, Seo M, Na K D, Hwang C S and Won J Y 2009 J. Electrochem. Soc. 156 G48 [28] Umezawa N, Shiraishi K, Ohno T, Watanabe H, Chikyow T, Torii K, Yamabe K, Yamada K, Kitajima H and Arikado T 2005 Appl. Phys. Lett. 86 143507 [29] Touski S B and Hosseini M 2020 Physica E 116 113763 [30] Ma X, Gong Y, Wu J, Li Y and Chen J 2019 Jpn. J. Appl. Phys. 58 110905 [31] Song X, Xu J and Liu L 2020 IEEE Trans. Electron Dev. 67 5196 [32] Lee H S, Park C S and Park H H 2014 Appl. Phys. Lett. 104 191604 [33] Rai A, Valsaraj A, Movva H C P, Roy A, Ghosh R, Sonde S, Kang S, Chang J, Trivedi T, Dey R, Guchhait S, Larentis S, Register L F, Tutuc E and Banerjee S K 2015 Nano Lett. 15 4329 [34] Deng L F, Lai P T, Chen W B, Xu J P, Liu Y R, Choi H W and Che C M 2011 IEEE Electron Device Lett. 32 93 [35] Choi C H, Rhee S J, Jeon T S, Lu N, Sim J H, Clark R, Niwa M and Kwong D L 2002 Digest. International Electron Devices Meeting, December 8-11, 2002, San Francisco, USA, p. 857 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|