Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊)1,2, Han-Mu Wang(王汉睦)1,2, Zeng-Li Ba(巴曾立)3, and Hong-Ping Liu(刘红平)1,2,†
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Physical Science, University of Science and Technology of China, Hefei 230026, China
Abstract We study the transient response dynamics of 87Rb atomic vapor buffered in 8 torr Ne gas through an electromagnetically induced transparency configured in -scheme. Experimentally, the temporal transmission spectra versus probe detuning by switching on and off the coupling one show complex structures. The transmitted probe light intensity drops to a minimum value when the coupling light turns off, showing a strong absorption. Even at the moment of turning on the coupling light at a subsequent delayed time, the atomic medium shows a fast transient response. To account for the transient switching feature, in the time-dependent optical Bloch equation, we must take the transverse relaxation dephasing process of atomic vapor into account, as well as the fluorescence relaxation along with the optical absorption. This work supplies a technique to quantify the transverse relaxation time scale and to sensitively monitor its variation along the environment by observing the transient dynamics of coherent medium, which is helpful in characterizing the coherent feature of the atomic medium.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074388 and 12004393).
Corresponding Authors:
Hong-Ping Liu
E-mail: liuhongping@wipm.ac.cn
Cite this article:
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平) Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas 2022 Chin. Phys. B 31 073201
[1] Seltzer S J, Rampulla D M, Rivillon-Amy S, Chabal Y J, Bernasek S L and Romalis M V 2008 J. Appl. Phys.104 103116 [2] Julsgaard B, Sherson J, Cirac J I, Fiurasek J and Polzik E S 2004 Nature432 482 [3] Kuzmich A, Mandel L and Bigelow N P 2000 Phys. Rev. Lett.85 1594 [4] Zhao S C, Wu Q X and Ma K 2016 Chin. J. Phys.54 756 [5] Zhang H, Zou S, Chen X Y and Li Y 2015 J. Korean Phys. Soc.66 1212 [6] Budker D and Romalis M 2007 Nat. Phys.3 227 [7] Seltzer S J and Romalis M V 2009 J. Appl. Phys.106 114905 [8] Brandt S, Nagel A, Wynands R and Meschede D 1997 Phys. Rev. A56 R1063 [9] Katsoprinakis G E, Dellis A T and Kominis I K 2007 Phys. Rev. A75 042502 [10] Dreiling J M, Norrgard E B, Tupa D and Gay T J 2012 Phys. Rev. A86 053416 [11] Liu X H, Luo H, Qu T L, Yang K Y and Ding Z C 2015 AIP Adv.5 107119 [12] Khalkhali S M H, Ranjbaran M, Mofidi D, Hamidi S M and Tehranchi M M 2017 Chin. J. Phys.55 301 [13] Horsley A, Du G X, Pellaton M, Affolderbach C, Mileti G and Treutlein P 2013 Phys. Rev. A88 063407 [14] Jeong H and Du S W 2009 Phys. Rev. A79 011802 [15] Jeong H and Du S 2010 Opt. Lett.35 124 [16] Wei D, Chen J F, Loy M M T, Wong G K L and Du S 2009 Phys. Rev. Lett.103 093602 [17] Jeong H and Du S 2010 Opt. Lett.35 124 [18] Meinert F, Basler C, Lambrecht A, Welte S and Helm H 2012 Phys. Rev. A85 013820 [19] Shwa D and Katz N 2014 Phys. Rev. A90 023858 [20] Meinert F, Basler C, Lambrecht A, Welte S and Helm H 2012 Phys. Rev. A85 013820 [21] Valente P, Failache H and Lezama A 2003 Phys. Rev. A67 013806 [22] Li Y Q and Xiao M 1995 Opt. Lett.20 1489 [23] Shuker M, Firstenberg O, Sagi Y, Ben-kish A, Davidson N and Ron A 2008 Phys. Rev. A78 063818 [24] Corsini E P, Karaulanov T, Balabas M and Budker D 2013 Phys. Rev. A87 022901 [25] Chen H X, Durrant A V, Marangos J P and Vaccaro J A 1998 Phys. Rev. A58 1545 [26] Greentree A D, Smith T B, de Echaniz S R, Durrant A V, Marangos J P, Segal D M and Vaccaro J A 2002 Phys. Rev. A65 053802 [27] Tan W H and Zhang W P 1985 Chin. Phys. Lett.2 309 [28] Ke H L, Miao P X, Yang S Y, Tu J H, Hao J, Zhu L L, Yang B, Wang J, Yang W, Cui J Z and Sun R T 2019 Optik180 517 [29] Minemoto T and Kanda T 1971 J. Phys. Soc. Jpn.31 1174 [30] Jacobson E 1977 J. Phys. B10 3409 [31] Fu Y Y and Yuan J 2019 Chin. Phys. B28 098504 [32] Liu X J, Ding M, Li Y, Hu Y H, Jin W and Fang J C 2018 Chin. Phys. B27 073201 [33] Luo J, Wu Z H, Zhao M X, Chen A Q and Zeng X Z 1996 J. Phys. B29 3319 [34] Ding Z, Yuan J, Li Y, Feng W and Wang Z 2015 Acta Opt. Sin.35 0602002 (in Chinese) [35] Sarkisyan D G, Papoyan A V, Varzhapetyan T S, Blush K and Auzinsh M 2014 Opt. Spectrosc.96 328 [36] Horsley A, Du G X, Pellaton M, Affolderbach C, Mileti G and Treutlein P 2013 Phys. Rev. A88 063407 [37] Li Q, Zeng X, Zhang J et al. 2011 Academic International Symposium on Optoelectronics and Microelectronics Technology, October 12-16, 2011, Harbin, China, pp. 27-30
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.