CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space |
Shang-Qi Kuang(匡尚奇)1,2,†, Bo-Chao Li(李博超)1,2, Yi Wang(王依)3, Xue-Peng Gong(龚学鹏)3,‡, and Jing-Quan Lin(林景全)1,2,§ |
1 School of Science, Changchun University of Science and Technology, Changchun 130022, China; 2 Key Laboratory of Ultrafast and Extreme Ultraviolet Optics, Changchun University of Science and Technology, Changchun 130022, China; 3 State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
|
|
Abstract With the purpose of designing the extreme ultraviolet polarizer with many objectives, a combined application of multi-objective genetic algorithms is theoretically proposed. Owing to the multi-objective genetic algorithm, the relationships between different designing objectives of extreme ultraviolet polarizer have been obtained by analyzing the distribution of nondominated solutions in the four-dimensional objective space, and the optimized multilayer design can be obtained by guiding the searching in the desired region based on the multi-objective genetic algorithm with reference direction. Compared with the conventional method of multilayer design, our method has a higher probability of achieving the optimal multilayer design. Our work should be the first research in optimizing the optical multilayer designs in the high-dimensional objective space, and our results demonstrate a potential application of our method in the designs of optical thin films.
|
Received: 06 September 2021
Revised: 06 September 2021
Accepted manuscript online: 12 January 2022
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
41.50.+h
|
(X-ray beams and x-ray optics)
|
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62175018, 61905239, and 61974142) and Jilin Scientific and Technological Development Plan, China (Grant Nos. 20190201013JC and 20200401052GX). |
Corresponding Authors:
Shang-Qi Kuang, Xue-Peng Gong, Jing-Quan Lin
E-mail: ksq@cust.edu.cn;gongxuepeng120@foxmail.com;linjingquan@cust.edu.cn
|
Cite this article:
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全) Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space 2022 Chin. Phys. B 31 077802
|
[1] Bakshi V 2018 EUV Lithography, 2nd edn [2] Wang Z S, Wang H C, Zhu J T, Wang F L, Gu Z X, Chen L Y, Michette A G, Powell A K, Pfauntsch S J and Schäfers F 2006 J. Appl. Phys. 99 056108 [3] Wang Z S, Wang H C, Zhu J T, Zhang Z, Wang F L, Xu Y, Zhang S M, Wu W J, Chen L Y, Michette A G, Pfauntsch S J, Powell A K, Schäfers F, Gaupp A, Cui M Q, Sun L J and MacDonald M 2007 Appl. Phys. Lett. 90 081910 [4] Harada T and Watanabe T 2018 Proc. SPIE 10809 108091 [5] Pirozhkov A S and Ragozin E N 2015 Phys.-Usp. 58 1095 [6] Huang Q S, Medvedev V, van de Kruijs R, Yakshin A, Louis E and Bijkerk F 2017 Appl. Phys. Rev. 4 011104 [7] Aquila A L, Salmassi F, Dollar F, Liu Y and Gullikson E 2006 Opt. Express 14 10073 [8] Lin C Y, Chen S J, Chen Z Y and Ding Y C 2015 Chin. Phys. B 24 117802 [9] Wang H C, Zhu J T, Wang Z S, Zhang Z, Zhang S M, Wu W J, Chen L Y, Michette A G, Powell A K, Pfauntsch S J, Schfers F and Gaupp A 2006 Thin Solid Films 515 2523 [10] Tan M Y, Zhu J T, Chen L Y, Wang Z S, Le Guen K, Jonnard P, Giglia A, Mahne N and Nannarone S 2011 Nucl. Instrum. Meth. A 654 588 [11] Yakshin A E, Kozhevnikov I V, Zoethout E, Louis E and Bijkerk F 2010 Opt. Express 18 6957 [12] Kozhevnikov I V, Yakshin A E and Bijkerk F 2015 Opt. Express 23 9276 [13] Jiang H and Michette A G 2013 Nucl. Instrum. Meth. A 703 22 [14] Diveki Z, Bourassin-Bouchet C, de Rossi S, English E, Meltchakov E, Gobert O, Guénot D, Carré B, Saliéres P, Ruchon T and Delmotte F 2014 J. Mod. Opt. 61 122 [15] Yang X W, Kozhevnikov I V, Huang Q S, Wang H C, Sawhney K and Wang Z S 2016 Opt. Express 24 15079 [16] Mahdi E, Mohsen G and Zeinab S 2018 Chin. Phys. B 27 106802 [17] Pervak V, Trubetskov M K and Tikhonravov A V 2011 Opt. Express 19 2371 [18] Wang W L 2013 Optik 124 2482 [19] Kuang S Q, Gong X P and Yang H G 2018 Opt. Commun. 410 805 [20] Kuang S Q, Wang J B, Yang H G, Huo T L and Zhou H J 2019 AIP Adv. 9 045027 [21] Lin Q Z, Ma Y P, Chen J Y, Zhu Q L, Coello Coello C A, Wong K C and Chen F 2018 Inform. Sciences 430-431 46 [22] Liu R C, Li J X, Feng W, Yu X and Jiao L C 2018 Soft Comput. 22 6311 [23] Henke B L, Gullikson and Davis J C 1993 At. Data Tables 54 181 [24] Windt D L 1998 Comput. Phys. 12 360 [25] Wu S Y, Long X W and Yang K Y 2012 ISRN Optics 2012 659642 [26] Deb K, Pratap A, Agarwal S and Meyarivan T 2002 IEEE T. Evolut. Comput. 6 182 [27] Zitzler E, Laumanns M and Thiele L 2001 SPEA2:Improving the Strength Pareto Evolutionary Algorithm (Eidgenössische Technische Hochschule Zürich) (Institut für Technische Informatik und Kommunikationsnetze) [28] Kuang S Q, Gong X P and Yang H G 2017 J. Appl. Phys. 122 185302 [29] Furman S and Tikhonravov A 1992 Basics of Optics of Multilayer Systems (Edition Frontieres) pp. 58-68 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|