Special Issue:
TOPICAL REVIEW—Laser and plasma assisted synthesis of advanced nanomaterials in liquids
|
SPECIAL TOPIC—Laser and plasma assisted synthesis of advanced nanomaterials in liquids |
Prev
Next
|
|
|
Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic? |
Alena Nastulyavichus†, Nikita Smirnov, and Sergey Kudryashov |
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia |
|
|
Abstract Near-IR (wavelength ≈ 1 μm) laser ablation of bulk, chemically-inert gold in water was compared for different laser pulse width in broad the range of 300 fs-100 ns, comparing a number of key ablation characteristics: mass loss, single-shot crater volume and extinction coefficient of the generated colloidal solutions taken in the spectral ranges of interband transitions and localized plasmon resonance. Comparing to related air-based ablation results, at the given fluences laser ablation in the liquid resulted in the maximum ablation yield per unit energy and maximum NP yield per pulse and per unit energy for the picosecond lasers, occurring at subcritical peak pulse powers for laser self-focusing. The self-focusing effect was demonstrated to yield in incomplete, effectively weaker focusing in the water filaments of ultrashort laser pulses with supercritical peak powers, comparing to linear (geometrical) focusing at sub-critical peak powers. At the other, nanosecond-pulse extreme the high ablation yield per pulse, but low ablation yield per unit energy and low NP yield per pulse and per unit energy were related to strong ablation plasma screening, providing mass removal according to the well-established scaling relationships for plasma. Illustrative comparison of the ablation and nanoparticle generation efficiency versus the broad fs-ns laser pulse width range was enabled in terms of productivity, economicity, and ergonomicity, using the proposed universal quantitative criteria.
|
Received: 16 November 2021
Revised: 13 February 2022
Accepted manuscript online: 17 February 2022
|
PACS:
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
52.38.Mf
|
(Laser ablation)
|
|
52.38.Hb
|
(Self-focussing, channeling, and filamentation in plasmas)
|
|
Fund: Project supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 075-15-2020-775). |
Corresponding Authors:
Alena Nastulyavichus
E-mail: ganuary_moon@mail.ru
|
Cite this article:
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic? 2022 Chin. Phys. B 31 077803
|
[1] Sajti C L, Sattari R, Chichkov B N and Barcikowski S 2010 J. Phys. Chem. C 114 [2] Gökce B, Streubel R and Barcikowski S 2016 Opt. Lett. 41 1486 [3] Ionin A, Ivanova A, Khmel'nitskii R, Klevkov Y, Kudryashov S, Mel'nik N, Nastulyavichus A, Rudenko A, Saraeva I, Smirnov N, Zayarny D, Baranov A, Kirilenko D, Brunkov P and Shakhmin A 2018 Appl. Surf. Sci. 436 662 [4] Shi Y, Jiang Z, Cao J and Ehmann K F 2020 Appl. Surf. Sci. 500 144286 [5] Smirnov N A, Kudryashov S I, Rudenko A A, Zayarny D A and Ionin A A 2021 Appl. Surf. Sci. 562 150243 [6] Kudryashov S I, Nastulyavichus A A, Saraeva I N, Rudenko A A, Zayarny D A and Ionin A A 2020 Appl. Surf. Sci. 519 146204 [7] Arakelyan S M, Veiko V P, Kutrovskaya S V, Kucherik A O, Osipov A V, Vartanyan T A and Itina T E 2016 J. Nanoparticle Res. 18 155 [8] Dittrich S, Streubel R, McDonnell C, Huber H P, Barcikowski S and Gökce B 2019 Appl. Phys. A 125 1 [9] Zhang D, GÖkce B and Barcikowski S 2017 Chem. Rev. 117 3990 [10] Scaramuzza S, Zerbetto M and Amendola V 2016 J. Phys. Chem. C 120 9453 [11] Tarasenka N, Nominé A, Nevar A, Nedelko M, Kabbara H, Bruyére S, Ghanbaja J, Noel C, Krasilin A, Zograf G, Milichko V, Kulachenkov N, Makarov S, Belmonte T and Tarasenko N 2020 Phys. Rev. Appl. 13 014021 [12] Gentile L, Mateos H, Mallardi A, Dell'Aglio M, De Giacomo A, Cioffi N and Palazzo G 2021 J. Nanoparticle Res. 23 1 [13] Sukhov I A, Simakin A V, Shafeev G A, Viau G and Garcia C 2012 Quantum Electron. 42 453 [14] Starinskiy S V, Shukhov Y G and Bulgakov A V 2017 Appl. Surf. Sci. 396 1765 [15] Goncharova D A, Kharlamova T S, Reutova O and Svetlichnyi V A 2021 Colloids Surfaces A Physicochem. Eng. Asp. 613 126115 [16] Kudryashov S I, Samokhvalov A A, Nastulyavichus A A, Saraeva I N, Mikhailovskii V Y, Ionin A A and Veiko V P 2019 Mater. 12 562 [17] Kabashin A V. and Meunier M 2003 J. Appl. Phys. 94 7941 [18] Tarasenka N, Shustava E, Butsen A, Kuchmizhak A A, Pashayan S, Kulinich S A and Tarasenko N 2021 Appl. Surf. Sci. 554 149570 [19] Pang B, Ma Y, Tian Z, Liu J, Wu S, Teng D, Li P and Liang C 2021 J. Colloid Interface Sci. 585 452 [20] Tangeysh B, Tibbetts K M, Odhner J H, Wayland B B and Levis R J 2013 J. Phys. Chem. C 117 18719 [21] Cheng-Yu Shih, René Streubel, Johannes Heberle, et al. 2018 Nanoscale 10 6900 [22] Saraeva I N, Nastulyavichus A A, Kudryashov S I, Rudenko A A, Zayarny D A, Ionin A A, Klevkov Y V, Zhilnikova M I and Simakin A V 2019 Laser Phys. Lett. 16 066004 [23] Saraeva I N, Kudryashov S I, Rudenko A A, Zhilnikova M I, Ivanov D S, Zayarny D A, Simakin A V, Ionin A A and Garcia M E 2019 Appl. Surf. Sci. 470 1018 [24] Nastulyavichus A A, Kudryashov S I, Rudenko A A, Zayarny D A and Ionin A A 2020 J. Phys. Conf. Ser. 1692 012010 [25] Streubel R, Bendt G and Gökce B 2016 Nanotechnology 27 205602 [26] Menéndez-Manjón A, Wagener P and Barcikowski S 2011 J. Phys. Chem. C 115 5108 [27] Maciulevičius M, Vinčiunas A, Brikas M, Butsen A, Tarasenka N, Tarasenko N and Račiukaitis G 2013 Appl. Phys. A:Mater. Sci. Process. 111 289 [28] Kohsakowski S, Gökce B, Tanabe R, Wagener P, Plech A, Ito Y and Barcikowski S 2016 Phys. Chem. Chem. Phys. 18 16585 [29] Streubel R, Barcikowski S, letters B G O and 2016 osapublishing.org [30] Barcikowski S, Me/'nndez-Manjón A, Chichkov B, Brikas M and Račiukaitis G 2007 Appl. Phys. Lett. 91 083113 [31] Sylvestre J P, Kabashin A V, Sacher E and Meunier M 2005 Appl. Phys. A 80 753 [32] Kudryashov S I, Samokhvalov A A, Ageev E I, Petrov A A and Veiko V P 2018 Int. J. Heat Mass Transfer 127 1095 [33] Danilov P A, Ionin A A, Kudryashov S I, Rudenko A A, Smirnov N A, Porfirev A P, Kuchmizhak A A, Vitrik O B, Kovalev M S and Krasin G K 2020 Opt. Mater. Express 10 2717 [34] Smirnov N A, Kudryashov S I, Danilov P A, Nastulyavichus A A, Rudenko A A, Ionin A A, Kuchmizhak A A and Vitrik O B 2020 Opt. Quantum Electron. 52 1 [35] Doñate-Buendía C, Mínguez-Vega G, Lancis J and Fernández-Alonso M 2019 Photonics Res. 7 1249 [36] Kudryashov S I, Nguyen L V, Kirilenko D A, Brunkov P N, Rudenko A A, Busleev N I, Shakhmin A L, Semencha A V, Khmelnitsky R A, Melnik N N, Saraeva I N, Nastulyavichus A A, Ionin A A, Tolordava E R and Romanova Y M 2018 ACS Appl. Nano Mater. 1 2461 [37] Lam J, Lombard J, Dujardin C, Ledoux G, Merabia S and Amans D 2016 Appl. Phys. Lett. 108 074104 [38] Ibrahimkutty S, Wagener P, Menzel A, Plech A and Barcikowski S 2012 Appl. Phys. Lett. 101 103104 [39] Ionin A A, Kudryashov S I and Seleznev L V 2010 Phys. Rev. E 82 016404 [40] Jr C R P, Turner T P, Harrison R F, York G W, Osborne W Z, Anderson G K, Corlis X F, Haynes L C, Steele H S, Spicochi K C and King T R 1998 J. Appl. Phys. 64 1083 [41] Gregg D W and Thomas S J J. Appl. Phys. 37 2787 [42] Caruso A, Bertotti B and Giupponi P 1966 Nuovo Cim. B 45 176 [43] Nemchinov I 1967 J. Appl. Math. Mech. 31 320 [44] Basov N, Gribkov V, Krokhin O and Sklizkov G 1968 Sov. Phys. JETP 27 575 [45] Nastulyavichus A A, Kudryashov S I, Smirnov N A, Rudenko A A, Kharin A Y, Zayarny D A bertovich and Ionin A A 2019 Opt. Laser Technol. 111 75 [46] Kudryashov S I, Nastulyavichus A A, Ivanova A K, Smirnov N A, Khmelnitskiy R A, Rudenko A A, Saraeva I N, Tolordava E R, Yu. Kharin A, Zavestovskaya I N, Romanova Y M, Zayarny D A and Ionin A A 2019 Appl. Surf. Sci. 470 825 [47] Yoo J H, Jeong S H, Greif R and Russo R E 2000 J. Appl. Phys. 88 1638 [48] Yoo J H, Jeong S H, Mao X L, Greif R and Russo R E 2000 Appl. Phys. Lett. 76 783 [49] Paul S, Kudryashov S I, Lyon K and Allen S D 2007 Appl. Phys. 101 043106 [50] Kudryashov S I, Paul S, Lyon K and Allen S D 2011 Appl. Phys. Lett. 98 254102 [51] Bulgakova N M, Evtushenko A B, Shukhov Y G, Kudryashov S I and Bulgakov A V 2011 Appl. Surf. Sci. 257 10876 [52] Kudryashov S I, Tikhov A A and Zvorykin V D 2010 Appl. Phys. A 102 493 [53] Neuenschwander B, Jaeggi B, Schmid M and Hennig G 2014 Phys. Procedia 56 1047 [54] Smirnov N A, Kudryashov S I, Danilov P A, Rudenko A A, Ionin A A and Nastulyavichus A A 2018 JETP Lett. 108 368 [55] Boyd R W, Shi Z and De Leon I 2014 Opt. Commun. 326 74 [56] Smirnov N A, Kudryashov S I, Danilov P A, Rudenko A A, Gakovic B, Milovanović D, Ionin A A, Nastulyavichus A A and Umanskaya S F 2019 Laser Phys. Lett. 16 056002 [57] Anisimov S I, Zhakhovsky V V, Inogamov N A, Migdal K P, Petrov Y V and Khokhlov V A 2019 J. Exp. Theor. Phys. 129 757 [58] Petrov Y V, Inogamov N A, Anisimov S I, Migdal K P, Khokhlov V A and Khishchenko K V 2015 J. Phys. Conf. Ser. 653 012087 [59] Ionin A A, Kudryashov S I, Makarov S V, Rudenko A A, Saltuganov P N, Seleznev L V, Sinitsyn D V and Sunchugasheva E S 2014 Appl. Surf. Sci. 292 678 [60] Shih C Y, Shugaev M V, Wu C and Zhigilei L V 2020 Phys. Chem. Chem. Phys. 22 7077 [61] Inogamov N A, Khokhlov V A, Petrov Y V and Zhakhovsky V V 2020 Mol. 25 67 [62] Inogamov N A, Khokhlov V A, Petrov Y V and Zhakhovsky V V 2020 Opt. Quantum Electron. 52 1 [63] Petrov Y V, Khokhlov V A, Zhakhovsky V V and Inogamov N A 2019 Appl. Surf. Sci. 492 285 [64] Leveugle E, Ivanov D S and Zhigilei L V 2004 Appl. Phys. A 79 1643 [65] Artyukov I A, Zayarniy D A, Ionin A A, Kudryashov S I, Makarov S V and Saltuganov P N 2014 JETP Lett. 99 51 [66] Yang J, Zhao Y, Zhang N, Liang Y and Wang M 2007 Phys. Rev. B 76 165430 [67] Wagener P, Schwenke A, Chichkov B N and Barcikowski S 2010 J. Phys. Chem. C 114 7618 [68] Palik E D 2012 Handbook of optical constants of solids Handb. Opt. Constants Solids 1 1 [69] Kohsakowski S, Santagata A, Dell'Aglio M, de Giacomo A, Barcikowski S, Wagener P and Gökce B 2017 Appl. Surf. Sci. 403 487 [70] Shih C Y, Chen C, Rehbock C, Tymoczko A, Wiedwald U, Kamp M, Schuermann U, Kienle L, Barcikowski S and Zhigilei L V 2021 J. Phys. Chem. C 125 2132 [71] Kudryashov S I 1999 "Thermodynamic characteristics of metastable liquid-vapor equilibrium of carbon at laser vaporization of polycrystalline graphite", Ph. D. Dissertation (Moscow State University) [72] Viktor Myroshnychenko, Jessica Rodríguez-Fernández, Isabel Pastoriza-Santos, Funston A M, Carolina Novo, Paul Mulvaney, Liz-Marzán L M and de Abajo F J G 2008 Chem. Soc. Rev. 37 1792 [73] Couairon A and Mysyrowicz A 2007 Phys. Rep. 441 47 [74] Geints Y É, Zemlyanov A A, Ionin A A, Kudryashov S I, Seleznev L V, Sinitsyn D V and Sunchugasheva E S 2010 J. Exp. Theor. Phys. 111 724 [75] Kiran P P, Bagchi S, Krishnan S R, Arnold C L, Kumar G R and Couairon A 2010 Phys. Rev. A 82 013805 [76] Johnson A, Durfee C G, Adams D E, Kleinfeld D, Vitek D N, Squier J A, Tsai P S and Backus S 2010 Opt. Express. 18 18086 [77] He F, Xu H, Xiong H, Ni J, Midorikawa K, Sugioka K, Cheng Y and Xu Z 2010 Opt. Lett. 35 1106 [78] Xu C, Zhu G and Durst M E 2006 Opt. Express. 14 12243 [79] Xu C, Zhu G, Howe J van, Durst M and Zipfel W 2005 Opt. Express. 13 2153 [80] Durfee C G, Adams D E, Kleinfeld D, Vitek D N, Block E, Squier J A, Backus S and Bellouard Y 2010 Opt. Express. 18 24673 [81] Kammel R, Ackermann R, Thomas J, Götte J, Skupin S, Tünnermann A and Nolte S 2014 Light Sci. Appl. 3 e169 [82] Kudryashov S, Danilov P, Schneider L, Schille J, Loeschner U, Nastulyavichus A, Smirnov N, Kuchmizhak A and Vitrik O 2021 Laser Phys. Lett. 18 016101 [83] Waag F, Streubel R, Gökce B and Barcikowski S 2021 Appl. Nanosci. 11 1303 [84] Jendrzej S, Gökce B, Epple M and Barcikowski S 2017 ChemPhysChem 18 1012 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|