Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077801    DOI: 10.1088/1674-1056/ac4cbb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes

Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙)
School of Information Science and Technology&Tongke School of Microelectronics, Nantong University, Nantong 226019, China
Abstract  The optical polarization characteristics of surface plasmon (SP) coupled AlGaN-based light emitting diodes (LEDs) are investigated theoretically by analyzing the radiation recombination process and scattering process respectively. For the Al0.5Ga0.5N/Al/Al2O3 slab structure, the relative intensity of TE-polarized and TM-polarized spontaneous emission (SE) rate into the SP mode obviously depends on the thickness of the Al layer. The calculation results show that TM dominated emission will be transformed into TE dominated emission with the decrease of the Al thickness, while the emission intensities of both TE/TM polarizations will decrease significantly. In addition, compared with TM polarized emission, TE polarized emission is easier to be extracted by SP coupling. For the Al0.5Ga0.5N/Al nano-particle structure, the ratio of transmittance for TE/TM polarized emission can reach ~3.06, while for the Al free structure, it is only 1.2. Thus, the degree of polarization of SP coupled LED can be improved by the reasonable structural design.
Keywords:  surface plasmon      AlGaN-based light emitting diodes      FDTD      K-P method  
Received:  18 October 2021      Revised:  03 January 2022      Accepted manuscript online:  19 January 2022
PACS:  78.66.Fd (III-V semiconductors)  
  78.67.De (Quantum wells)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: This work was supported by the National Nature Science Foundation of China (Grant Nos. 62004109, 61874168, and 62074086), Jiangsu Provincial Double-Innovation Doctor Program, Development of antibacterial multifunctional PVC facing new material technology (Grant No. 21ZH626).
Corresponding Authors:  Yi Li     E-mail:  liyi2016@ntu.edu.cn

Cite this article: 

Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙) Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes 2022 Chin. Phys. B 31 077801

[1] Amano H, Collazo R, Santi C D, Einfeldt S, Funato M, Glaab J, Hagedorn S, Hirano A, Hirayama H, Ishii R, Kashima Y, Kawakami Y, Kirste R, Kneissl M, Martin R, Mehnke F, Meneghini M, Ougazzaden A, Parbrook P J, Rajan S, Reddy P, R?mer F, Ruschel J, Sarkar B, Scholz F, Schowalter L J, Shields P, Sitar Z, Sulmoni L, Wang T, Wernicke T, Weyers M, Witzigmann B, Wu Y R, Wunderer T and Zhang Y 2020 Physica D 53 503001
[2] Takano T, Mino T, Sakai J, Noguchi N, Tsubaki K and Hirayama H 2017 Appl. Phys. Express 10 031002
[3] Nagasawa Y and Hirano A 2018 Appl. Sci. 8 1264
[4] Chang W Y, Kuo Y, Yao Y F, Yang C C, Wu Y R and Kiang Y W 2018 Opt. Express 26 8340
[5] Li Y, Zhu Y, Mei G, Wang M, Deng H and Yin H 2020 Jpn. J. Appl. Phys. 59 084001
[6] Khan M A, Maeda N, Jo M, Akamatsu Y, Tanabe R, Yamada Y and Hirayama H 2019 J. Mater. Chem. C 7 143
[7] Wang Y, Rong X, Ivanov S, Jmerik V, Chen Z, Wang H, Wang T, Wang P, Jin P, Chen Y, Kozlovsky V, Sviridov D E, Zverev M, Zhdanova E, Gamov N, Studenov V, Miyake H, Li H, Guo S, Yang X, Xu F, Yu T, Qin Z, Ge W, Shen B and Wang X 2019 Adv. Opt. Mater. 7 1801763
[8] Guo W, Sun H, Torre B, Li J, Sheikhi M, Jiang J, Li H, Guo S, Li K H, Lin R, Giugni A, Di Fabrizio E, Li X and Ye J 2018 Adv. Funct. Mater. 28 1802395
[9] Lee J W, Ha G, Park J, Song H G, Park J Y, Lee J, Cho Y H, Lee J L, Kim J K and Kim J K 2020 Acs Appl. Mater. Interfaces. 12 36339
[10] He J, Wang S, Chen J, Wu F, Dai J, Long H, Zhang Y, Zhang W, Feng Z C, Zhang J, Du S, Ye L and Chen C 2018 Nanotechnology. 29 195203
[11] Zhang C, Tang N, Shang L, Fu L, Wang W, Xu F, Wang X, Ge W and Shen B 2017 Sci. Rep. 7 2358
[12] Li Y, Zhang R, Xie Z, Liu B, Chen P, Zhang G, Tao T, Zhuang Z, Zhi L, Gan T and Zheng Y 2013 J. Appl. Phys. 114 113104
[13] Neogi A, Lee C W, Everitt H O, Kuroda T, Tackeuchi A and Yablonovitch E 2002 Phys. Rev. B 66 153305
[14] Feng X, Cui K, Liu F and Huang Y 2012 Appl. Phys. Lett. 101 121102
[15] Chuang S L and Chang C S 1997 Semicond. Sci. Technol. 12 252
[16] Takeuchi K, Adachi S and Ohtsuka K 2010 J. Appl. Phys. 107 023306
[17] Maier S A 2019 Opt. Express 27 A436
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[6] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[7] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[8] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[11] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[12] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[13] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[14] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[15] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
No Suggested Reading articles found!