Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷)1,2, Hong Zeng(曾鸿)1,2, Peng Cheng(程鹏)1,2, Deyuan Yao(姚德元)1,2, Xiaomei Pan(潘孝美)1,2, Xiao Zhang(张晓)1,3,†, and Junfeng Ding(丁俊峰)1,2,‡
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract The recent discovery of room temperature superconductivity (283 K) in carbonaceous sulfur hydride (C-S-H) has attracted much interest in ternary hydrogen rich materials. In this report, ternary hydride P-S-H was synthesized through a photothermal-chemical reaction from elemental sulfur (S), phosphorus (P) and molecular hydrogen (H2) at high pressures and room temperature. Raman spectroscopy under pressure shows that H2S and PH3 compounds are synthesized after laser heating at 0.9 GPa, and a ternary van der Waals compound P-S-H is synthesized with further compression to 4.6 GPa. The P-S-H compound is probably a mixed alloy of PH3 and (H2S)2H2 with a guest-host structure similar to the C-S-H system. The ternary hydride can persist up to 35.6 GPa at least and shows two phase transitions at approximately 23.6 GPa and 32.8 GPa, respectively.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52002372, 51672279, 51727806, 11874361, and 11774354), Science Challenge Project (Grant No. TZ2016001), and Chinese Academy of Sciences Innovation Grant (Grant No. CXJJ-19-B08).
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰) Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures 2022 Chin. Phys. B 31 067402
[1] Lototskyy M V, Yartys V A, Pollet B G and Bowman R C 2014 International Journal of Hydrogen Energy39 5818 [2] Ichikawa T, Fujii H, Isobe S and Nabeta K 2005 Appl. Phys. Lett.86 241914 [3] Xiao X Z, Chen L X, Fan X L, Wang X H, Chen C P, Lei Y Q and Wang Q D 2009 Appl. Phys. Lett.94 041907 [4] Liu Y, Kanhere P D, Wong C L, Tian Y F, Feng Y H, Boey F, Wu T, Chen H Y, White T J, Chen Z and Zhang Q C 2010 Journal of Solid State Chemistry183 2644 [5] Zhang X, Fan J, Lu X, Han Z, Cazorla C, Hu L, Wu T and Chu D 2021 Chemical Engineering Journal415 129048 [6] Ovshinsky S R, Fetcenko M A and Ross J 1993 Science260 176 [7] Ashcroft N W 2004 Phys. Rev. Lett.92 187002 [8] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature525 73 [9] Zhang X, Xu W, Wang Y, Jiang S, Gorelli F A, Greenberg E, Prakapenka V B and Goncharov A F 2018 Phys. Rev. B97 064107 [10] Geballe Z M, Liu H, Mishra A K, Ahart M, Somayazulu M, Meng Y, Baldini M and Hemley R J 2018 Angewandte Chemie International Edition57 688 [11] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Materials Today33 36 [12] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature569 528 [13] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett.122 027001 [14] Snider E, Dasenbrock-Gammon N, Mcbride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A and Dias R P 2020 Nature586 373 [15] Cheng Y, Wang X, Zhang J, Yang K, Niu C and Zeng Z 2019 RSC Advances9 7680 [16] Errea I, Calandra M, Pickard C J, Nelson J, Needs R J, Li Y, Liu H, Zhang Y, Ma Y and Mauri F 2015 Phys. Rev. Lett.114 157004 [17] Komelj M and Krakauer H 2015 Phys. Rev. B92 205125 [18] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N and Ohishi Y 2016 Nat. Phys.12 835 [19] Bernstein N, Hellberg C S, Johannes M D, Mazin I I and Mehl M J 2015 Phys. Rev. B91 060508 [20] Errea I, Calandra M, Pickard C J, Nelson J R, Needs R J, Li Y, Liu H, Zhang Y, Ma Y and Mauri F 2016 Nature532 81 [21] Heil C and Boeri L 2015 Phys. Rev. B92 060508 [22] Liu B B, Cui W W, Shi J M, Zhu L, Chen J, Lin S Y, Su R M, Ma J Y, Yang K, Xu M L, Hao J, Durajski A P, Qi J S, Li Y L and Li Y W 2018 Phys. Rev. B98 8 [23] Amsler M 2019 Phys. Rev. B99 060102 [24] Chang P H, Silayi S, Papaconstantopoulos D A and Mehl M J 2020 Journal of Physics and Chemistry of Solids139 109315 [25] Ge Y F, Zhang F and Yao Y G 2016 Phys. Rev. B93 224513 [26] Strobel T A, Ganesh P, Somayazulu M, Kent P R and Hemley R J 2011 Phys. Rev. Lett.107 255503 [27] Guigue B, Marizy A and Loubeyre P 2017 Phys. Rev. B95 020104 [28] Pace E J, Liu X D, Dalladay-Simpson P, Binns J, Peña-Alvarez M, Attfield J P, Howie R T and Gregoryanz E 2020 Phys. Rev. B101 174511 [29] Bykova E, Bykov M, Chariton S, Prakapenka V B, Glazyrin K, Aslandukov A, Aslandukova A, Criniti G, Kurnosov A and Goncharov A F 2021 Phys. Rev. B103 L140105 [30] Zhang X 2021 Chin. Phys. B30 127801 [31] Mao H K, Xu J and Bell P M 1986 Journal of Geophysical Research-Solid Earth and Planets91 4673 [32] Goncharov A F 2012 International Journal of Spectroscopy2012 1 [33] Ding J F, Ye T T, Zhang H C, Yang X, Zeng H, Zhang C G and Wang X L 2019 Appl. Phys. Lett.115 101902 [34] Huang T H, Decius J C and Nibler J W 1977 Journal of Physics and Chemistry of Solids38 897 [35] Shimizu H, Nakamichi Y and Sasaki S 1991 Journal of Chemical Physics95 2036 [36] Yuan Y, Li Y, Fang G, Liu G, Pei C, Li X, Zheng H, Yang K and Wang L 2019 National Science Review6 524 [37] Ceppatelli M, Scelta D, Serrano-Ruiz M, Dziubek K, Garbarino G, Jacobs J, Mezouar M, Bini R and Peruzzini M 2020 Nat. Commun.11 6125 [38] Gardner M 1973 Journal of the Chemical Society, Dalton Transactions 691 [39] Jensen J O, Zeroka D and Banerjee A 2000 Journal of Molecular Structure-Theochem505 31 [40] Ji C, Li B, Liu W, Smith J S, Majumdar A, Luo W, Ahuja R, Shu J, Wang J, Sinogeikin S, Meng Y, Prakapenka V B, Greenberg E, Xu R, Huang X, Yang W, Shen G, Mao W L and Mao H K 2019 Nature573 558 [41] Zhao X, Zhang K, Cao Z, Zhao Z, Struzhkin V V, Goncharov A F, Wang H, Gavriliuk A G, Mao H and Chen X 2020 Phys. Rev. B101 134506 [42] Pan D and Galli G 2020 Nat. Commun.11 421 [43] Sun Y, Tian Y F, Jiang B W, Li X, Li H F, Iitaka T, Zhong X and Xie Y 2020 Phys. Rev. B101 174102 [44] Kim D Y, Scheicher R H, Mao H K, Kang T W and Ahuja R 2010 Proc. Natl. Acad. Sci. USA107 2793 [45] Tanaka K, Tse J S and Liu H 2017 Phys. Rev. B96 100502
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.