Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054202    DOI: 10.1088/1674-1056/ac322d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces

Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy
Department of Electrical & Computer Engineering, North South University, Bashundhara, Dhaka, 1229, Bangladesh
Abstract  For both the longitudinal binding force and the lateral binding force, a generic way of controlling the mutual attraction and repulsion (usually referred to as reversal of optical binding force) between chiral and plasmonic hybrid dimers or tetramers has not been reported so far. In this paper, by using a simple plane wave and an onchip configuration, we propose a possible generic way to control the binding force for such hybrid objects in both the near-field region and the far-field region. We also investigate different inter-particle distances while varying the wavelengths of light for each inter-particle distance throughout the investigations. First of all, for the case of longitudinal binding force, we find that chiral-plasmonic hybrid dimer pairs do not exhibit any reversal of optical binding force in the near-field region nor in the far-field region when the wavelength of light is varied in an air medium. However, when the same hybrid system of nanoparticles is placed over a plasmonic substrate, a possible chip, it is possible to achieve a reversal of the longitudinal optical binding force. Later, for the case of lateral optical binding force, we investigate a setup where we place the chiral and plasmonic tetramers on a plasmonic substrate by using two chiral nanoparticles and two plasmonic nanoparticles, with the setup illuminated by a circularly polarized plane wave. By applying the left-handed and the right-handed circular polarization state of light, we also observe the near-field and the far-field reversal of lateral optical binding force for both cases. As far as we know, so far, no work has been reported in the literature on the generic way of reversing the longitudinal optical binding force and the lateral optical binding force of such hybrid objects. Such a generic way of controlling optical binding forces can have important applications in different fields of science and technology in the near future.
Keywords:  longitudinal binding force      plasmonics      chirality      optical force  
Received:  04 September 2021      Revised:  07 October 2021      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Dd (Wave propagation in random media)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  42.25.Ja (Polarization)  
Corresponding Authors:  M R C Mahdy,E-mail:mahdy.chowdhury@northsouth.edu     E-mail:  mahdy.chowdhury@northsouth.edu
About author:  2021-10-22

Cite this article: 

Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces 2022 Chin. Phys. B 31 054202

[1] Ashkin A 1970 Phys. Rev. Lett. 24 156
[2] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[3] Deniz A A, Mukhopadhyay S and Lemke E A 2008 J. Roy. Soc. Interface 5 15
[4] Rodríguez J, Dávila Romero L C and Andrews D L 2008 Phys. Rev. A 78 043805
[5] Wang S B and Chan C T 2014 Nat. Commun. 5 1
[6] Ashkin A and Dziedzic J M 1987 Science 235 1517
[7] Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T, Lim C T and Qiu C W 2017 Light: Science and Applications 6 e17039
[8] Dienerowitz M, Mazilu M and Dholakia K 2008 J Nanophoton. 2 021875
[9] Neuman K C and Nagy A 2008 Nat. Methods 5 491
[10] Burns M M, Fournier J M and Golovchenko J A 1989 Phys. Rev. Lett. 63 1233
[11] Rivy H M, Mahdy M R C, Masud N, Jony Z R and Das S C 2020 Commun. Theor. Phys. 72 045502
[12] Ahsan N B, Shamim R, Mahdy M R C, Das S C, Rivy H M, Dolon C I, Hossain M and Faisal K M 2020 J. Opt. Soc. Am. B 37 1273
[13] Andrews D L, Crisp R G and Bradshaw D S 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S637
[14] Grzegorczyk T M, Kemp B A and Kong J A 2006 Opt. Lett. 31 3378
[15] Grzegorczyk T M, Kemp B A and Kong J A 2006 Phys. Rev. Lett. 96 113903
[16] Karásek V, Dholakia K and Zemánek P 2006 Appl. Phys. B 84 149
[17] Guillon M, Moine O and Stout B 2006 Phys. Rev. Lett. 96 143902
[18] Metzger N K, Marchington R F, Mazilu M, Smith R L, Dholakia K and Wright E M 2007 Phys. Rev. Lett. 98 068102
[19] Ahlawat S, Dasgupta R and Gupta P K 2007 Proc. SPIE (Saratov: Optical Technologies in Biophysics and Medicine VIII) 65350W
[20] Karásek V and Zemánek P J. Opt. 9 S215
[21] Andrews D L 2008 Structures light and its applications: An introduction to phase-structured beams and nanoscale optical forces (Massachusetts: Academic Press) pp. 12-56, 82-129
[22] Guillon M and Stout B 2008 Phys. Rev. A 77 023806
[23] Li M and Arlt J 2008 Opt. Commun. 281 135
[24] Marchington R F, Mazilu M, Kuriakose S, Garcés-Chávez V, Reece P J, Krauss T F, Gu M and Dholakia K 2008 Opt. Express 16 3712
[25] Mohanty S K, Andrews J T and Gupta P K 2004 Opt. Express 12 2746
[26] Mellor C D, Fennerty T A and Bain C D 2006 Opt. Express 14 10079
[27] Burns M M, Fournier J M and Golovchenko J A 1990 Science 249 749
[28] Rivy H M, Mahdy M R C, Jony Z R, Masud N, Satter S S and Jani R 2019 Opt. Commun. 430 51
[29] Novitsky A, Qiu C W and Wang H 2011 Phys. Rev. Lett. 107 203601
[30] Chen J, Ng J, Lin Z and Chan C T 2011 Nat. Photon. 5 531
[31] Zhu T, Cao Y, Wang L, Nie Z, Cao T, Sun F, Jiang Z, Nieto-Vesperinas M, Liu Y, Qiu C W and Ding W 2018 Phys. Rev. Lett. 120 123901
[32] Ruffner D B and Grier D G 2012 Phys. Rev. Lett. 109 163903
[33] Zhang T, Mahdy M R C, Liu Y, Teng J H, Lim C T, Wang Z and Qiu C W 2017 ACS Nano 11 4292
[34] Zhang Q, Li J and Liu X 2019 Phys. Chem. Chem. Phys. 21 1
[35] Rodríguez-Fortunõ F J, Engheta N, Martínez A and Zayats A V 2015 Nat. Commun. 6 8799
[36] Ashkin A, Dziedzic J M and Yamane T 1987 Nature 330 769
[37] Tang Y and Cohen A E 2010 Phys. Rev. Lett. 104 163901
[38] Zhang S, Park Y S, Li J, Lu X, Zhang W and Zhang X 2009 Phys. Rev. Lett. 102 023901
[39] Wang B, Zhou J, Koschny T, Kafesaki M and Soukoulis C M 2009 J. Opt. A 11 114003
[40] Brown L V, Sobhani H, Lassiter J B, Nordlander P and Halas N J 2010 ACS Nano 4 819
[41] Aćimović S S, Kreuzer M P, González M U and Quidant R 2009 ACS Nano 3 1231 2009 ACS Nano 3 1231
[42] Miljković V D, Pakizeh T, Sepulvda B, Johansson P and Käll M 2010 J. Phys. Chem. C 114 7472
[43] Zhang Q, Xiao J J, Zhang X M, Yao Y and Liu H 2013 Opt. Express 21 6601
[44] Zhang Q and Xiao J J 2013 Opt. Lett. 38 4240
[45] Mahdy M R C, Zhang T, Danesh M and Ding W 2017 Sci. Rep. 7 1
[46] Liu H, Ng J, Wang S B, Hang Z H, Chan C T and Zhu S N 2011 New J. Phys. 13 073040
[47] Mahdy M R C, Danesh M, Zhang T, Ding W, Rivy H M, Chowdhury A B and Mehmood M Q 2018 Sci. Rep. 8 3164
[48] Satter S S, Mahdy M R C, Ohi M A R, Islam F and Rivy H M 2018 J. Phys. Chem. C 122 20923
[49] Bradshaw D S, Forbes K A, Leeder J M and Andrews D L 2015 Photonics 2 483
[50] Chen H, Jiang Y, Wang N, Lu W, Liu S and Lin Z 2015 Opt. Lett. 40 5530
[51] Forbes K A and Andrews D L 2015 Phys. Rev. A 91 053824
[52] A Salam 2015 AIP Conference Proceedings 1642 90
[53] Zhu Y, Wu Z, Li Z and Shang Q 2015 Procedia Engineering 102 329
[54] Forbes K A, Bradshaw D S and Andrews D L 2020 Nanophotonics 9 1
[55] Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G, Du L, Zhu S, Lei T and Yuan X 2013 Nat. Commun. 4 2891
[56] Raziman T V and Martin O J F 2015 Opt. Express 23 20143
[57] Zhao X, Zang S Q and Chen X 2020 Chem. Soci. Rev. 49 2481
[58] Burke D and Henderson D J 2002 British J. Anaesthesia 88 563
[59] Nguyen L A, He H and Pham-Huy C 2006 Int. J. Biomed. Sci. 2 85
[60] Qiu C W, Ding W, Mahdy M R C, Gao D, Zhang T, Cheong F C, Dogariu A, Wang Z and Lim C T 2015 Light: Science and Applications 4 e278
[61] Kemp B A 2011 J. Appl. Phys. 109 111101
[62] Baxter C and Loudon R 2010 J. Mod. Opt. 57 830
[63] Bohren C F and Huffman D R 2013 Absorption and Scattering of Light by Small Particles (New York: Wiley) pp. 57-81, 82-129
[64] Lakhtakia A, Varadan V K and Vasundara V 1989 Time-Harmonic Electromagnetic Fields in Chiral Media (Berlin: Springer) Vol. 335, pp. 5-13
[65] Dogariu A, Sukhov S and Sáenz J 2013 Nat. Photon. 7 24
[66] Wang X, Zou Y, Zhu J and Wang Y 2013 J. Phys. Chem. C 117 14197
[67] Bishop K J M, Wilmer C E, Soh S and Grzybowski B A 2009 Small 5 1600
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[3] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[4] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[5] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[6] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[7] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[8] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[9] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[10] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[11] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[12] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[13] Dielectric or plasmonic Mie object at air-liquid interface: The transferred and the traveling momenta of photon
M R C Mahdy, Hamim Mahmud Rivy, Ziaur Rahman Jony, Nabila Binte Alam, Nabila Masud, Golam Dastegir Al Quaderi, Ibraheem Muhammad Moosa, Chowdhury Mofizur Rahman, M Sohel Rahman. Chin. Phys. B, 2020, 29(1): 014211.
[14] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[15] Helicity of harmonic generation and attosecond polarization with bichromatic circularly polarized laser fields
Jun Zhang(张军), Tong Qi(齐桐), Xue-Fei Pan(潘雪飞), Jing Guo(郭静), Kai-Guang Zhu(朱凯光), Xue-Shen Liu(刘学深). Chin. Phys. B, 2019, 28(10): 103204.
No Suggested Reading articles found!