Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014211    DOI: 10.1088/1674-1056/ab5efa
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dielectric or plasmonic Mie object at air-liquid interface: The transferred and the traveling momenta of photon

M R C Mahdy1,2, Hamim Mahmud Rivy1, Ziaur Rahman Jony1, Nabila Binte Alam3, Nabila Masud1, Golam Dastegir Al Quaderi4, Ibraheem Muhammad Moosa5, Chowdhury Mofizur Rahman6, M Sohel Rahman5
1 Department of Electrical&Computer Engineering, North South University, Bashundhara, Dhaka 1229, Bangladesh;
2 Pi Labs Bangladesh LTD, ARA Bhaban, 39, Kazi Nazrul Islam Avenue, Kawran Bazar, Dhaka 1215, Bangladesh;
3 Department of Computer Science&Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh;
4 Department of Physics, University of Dhaka, Dhaka, Bangladesh;
5 Department of Computer Science&Engineering, Bangladesh University of Engineering and Technology ECE Building, West Palasi, Dhaka-1205;
6 Department of Computer Science&Engineering, United International University, Dhaka, Bangladesh
Abstract  Considering the inhomogeneous or heterogeneous background, we have demonstrated that if the background and the half-immersed object are both non-absorbing, the transferred photon momentum to the pulled object can be considered as the one of Minkowski exactly at the interface. In contrast, the presence of loss inside matter, either in the half-immersed object or in the background, causes optical pushing of the object. Our analysis suggests that for half-immersed plasmonic or lossy dielectric, the transferred momentum of photon can mathematically be modeled as the type of Minkowski and also of Abraham. However, according to a final critical analysis, the idea of Abraham momentum transfer has been rejected. Hence, an obvious question arises:whence the Abraham momentum? It is demonstrated that though the transferred momentum to a half-immersed Mie object (lossy or lossless) can better be considered as the Minkowski momentum, Lorentz force analysis suggests that the momentum of a photon traveling through the continuous background, however, can be modeled as the type of Abraham. Finally, as an interesting sidewalk, a machine learning based system has been developed to predict the time-averaged force within a very short time avoiding time-consuming full wave simulation.
Keywords:  Abraham-Minkowski controversy      dielectric interface      machine learning      optical force laws      optical pulling force      optical tractor beams  
Received:  14 June 2019      Revised:  15 October 2019      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Dd (Wave propagation in random media)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
Fund: Project supported by the World Academy of Science (TWAS) research grant 2018 (Ref: 18-121 RG/PHYS/AS_I-FR3240303643) and North South University (NSU), Bangladesh, internal research grant 2018-19 & 2019-20 (approved by the members of BOT, NSU, Bangladesh).
Corresponding Authors:  M R C Mahdy, M R C Mahdy     E-mail:  mahdy.chowdhury@northsouth.edu;msrahman@cse.buet.ac.bd

Cite this article: 

M R C Mahdy, Hamim Mahmud Rivy, Ziaur Rahman Jony, Nabila Binte Alam, Nabila Masud, Golam Dastegir Al Quaderi, Ibraheem Muhammad Moosa, Chowdhury Mofizur Rahman, M Sohel Rahman Dielectric or plasmonic Mie object at air-liquid interface: The transferred and the traveling momenta of photon 2020 Chin. Phys. B 29 014211

[1] Minkowski H 1908 Nachr. Ges. Wiss. Goettingen. Math. -Phys. Kl. 53-111. Reprint in 1910 Math. Ann. 68 472
[2] Abraham M 1909 Rend. Cir. Mat. Palermo 28 1
[3] Baxter C and Loudon R 2010 . Mod. Opt. 57 830
[4] Barnett S M and Loudon R 2010 Phi. Trans. R. Soc. A 368 927
[5] Barnett S M 2010 Phys. Rev. Lett. 104 070401
[6] Zhang L, She W, Peng N and Leonhardt U 2015 New J. Phys. 17 053035
[7] Kundu A, Rani R and Hazra K S 2017 Sci. Rep. 7 42538
[8] She W, Yu J and Feng R 2008 Phys. Rev. Lett. 101 243601
[9] Sukhov S and Dogariu A 2010 Opt. Lett. 35 3847
[10] Chen J, Ng J, Lin Z and Chan C T 2011 Na. Photon. 5 531
[11] Novitsky A, Qiu C W and Wang H 2011 Phys. Rev. Lett. 107 203601
[12] Kajorndejnukul V, Ding W, Sukhov S, Qiu C W and Dogariu A 2013 Nat. Photon. 7 787
[13] Brzobohaý O, Karásek V, Šiler M, Chvátal L, Čižmár T and Zemánek P 2013 Nat. Photon. 7 123
[14] Qiu C W, Ding W, Mahdy M R C, Gao D, Zhang T, Cheong F C and Lim C T 2015 Light Sci. App. 4 e278
[15] Mahdy M R, Mehmood M Q, Ding W, Zhang T and Chen Z N 2017 Ann. Phys. 529 1600213
[16] Zhu T, Novitsky A, Cao Y, Mahdy M R C, Wang L, Sun F and Ding W 2017 Appl. Phys. Lett. 111 061105
[17] Brevik I 1979 Phys. Rep. 52 133
[18] Brevik I 2018 Mo. Phys. Lett. A 33 1830006
[19] Wang S, Ng J, Xiao M and Chan C T 2016 Sc. Adv. 2 e1501485
[20] Walker G B, Lahoz D G and Walker G 1975 Can. J. Phys. 53 2577
[21] Partanen M, Häyrynen T, Oksanen J and Tulkki J 2017 Phys. Rev. A 95 063850
[22] Partanen M and Tulkki J 2017 Phys. Rev. A 96 063834
[23] Hinds E A and Barnett S M 2009 Phys. Rev. Lett. 102 050403
[24] Leonhardt U 2014 Phys. Rev. A 90 033801
[25] Kemp B A 2011 J. Appl. Phys. 109 111101
[26] Pfeifer R, Nieminen T, Heckenberg N R and Rubinsztei-Dunlop H 2007 Rev. Mod. Phys. 79 1197
[27] McDonald K T 2015 Bibliography on the Abraha-Minkowski Debate
[28] Brevik I 2018 Phys. Rev. A 98 043847
[29] Wang C 2018 Optik 172 1211
[30] Kemp B A and Grzegorczyk T M 2011 Opt. Lett. 36 49
[31] Mansuripur M 2009 Phys. Rev. Lett. 103 019301
[32] Brevik I 2009 Phys. Rev. Lett. 103 219301
[33] Comsol A B 2007 COMSOL Multiphysics reference manual, Version 5.3
[34] Lumerical FDTD 2013 Solutions, Inc. A commercia-grade simulator based on the finit-difference tim-domain method was used to perform the calculations, Vancouver, Canada
[35] Mahdy M R, Zhang T, Danesh M and Ding W 2017 Sc. Rep. 7 693
[36] Zhu T, Mahdy M R C, Cao Y, Lv H, Sun F, Jiang Z and Ding W 2016 Opt. Express 24 18436
[37] Kemp B A, Grzegorczyk T M and Kong J A 2006 Phys. Rev. Lett. 97 133902
[38] Zhang T, Mahdy M R C, Liu Y, Teng J, Lim C T, Wang Z and Qiu C W 2017 ACS Nano 11 4292
[39] Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M, Zhang T and Qiu C W 2017 Light Sc. Appl. 6 e17039
[40] Niet-Vesperinas M, Sáenz J, Góme-Medina R and Chantada L 2010 Opt. Express 18 11428
[41] Milonni P W and Boyd R W 2010 Adv. Opt. Photon. 2 519
[42] Rahaman M H and Kemp B A 2017 APL Photon. 2 101301
[43] Mansuripur M and Zakharian A R 2010 Opt. Commun. 283 355
[44] Laskar J M, Kumar P S, Herminghaus S, Daniels K E and Schöter M 2016 Appl. Opt. 55 3165
[45] Frias W and Smolyakov A I 2012 Phys. Rev. E 85 046606
[46] Rivy H M, Mahdy M R C, Jony Z, Masud N, Satter S S and Jani R 2019 Opt. Commun. 430 51
[47] Satter S S, Mahdy M R C, Ohi M A R, Islam F and Rivy H M 2018 J. Phys. Chem. C 122 20923
[48] Mahdy M R, Danesh, Zhang T, Ding W, Rivy H, Chowdhury A B and Mehmood M Q 2018 Sci. Rep. 8 316
[49] Kemp B A, Grzegorczyk T M and Kong J A 2005 Opt. Express 13 9280
[50] Sabah C 2008 Acta Phys. Pol. A 113 1589
[51] Sabah C, Tugrul Tastan H, Dincer F, Delihacioglu K, Karaaslan M and Unal E 2013 Pro. Electromagn. Res. 138 293
[52] Campbell G K, Leanhardt A E, Mun J, Boyd M, Streed E W, Ketterle W and Pritchard D E 2005 Phys. Rev. Lett. 94 170403
[53] Gibson A F, Kimmitt M F and Walker A C 1970 Appl. Phys. Lett. 17 75
[54] Mansuripur M, Zakharian A R and Wright E M 2013 Phys. Rev. A 88 023826
[55] Mansuripur M, Zakharian A R and Moloney 2006 Proc. SPIE Conf. 6326 63260
[56] Witten I H, Frank E, Hall M A and Pal C J 2016 Morgan Kaufmann
[57] Tan P N 2005 Introduction to data mining (Pearson Education India)
[58] Reddy S, Kodali S R and Gundabathina J L 2012 Int. J. Comput. Appl. 58 7
[59] Farid D, Zhang L, Rahman C, Hossain M A and Strachan R 2014 Expert Syst. Appl. 41 1937
[60] Khalajzadeh H, Mansouri M and Teshnehlab M 2014 Soft Computing in Industrial Applications. Advances in Intelligent Systems and Computing 223 (Cham: Springer)
[61] Patil T R and Sherekar S S 2013 Int. J. Compu. Sci. Appl. 6 256
[62] Kalmegh S R 2015 Int. J. Emerging Techno. Adv. Eng. 5 507
[63] Xu Y 2018 Chin. Phys. B 27 118901
[64] Ge C X, Wu Z, Bai J and Gong L 2019 Chin. Phys. B 28 024203
[65] Brevik I 2017 Ann. Phys. 377 1
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[5] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[6] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[7] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[8] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[9] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[10] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[11] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[12] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[13] Restricted Boltzmann machine: Recent advances and mean-field theory
Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 040202.
[14] Stability analysis of hydro-turbine governing system based on machine learning
Yuansheng Chen(陈元盛) and Fei Tong(仝飞). Chin. Phys. B, 2021, 30(12): 120509.
[15] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
No Suggested Reading articles found!