Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054201    DOI: 10.1088/1674-1056/ac4747
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals

Jianbo Pan(潘剑波)1,†, Jianfeng Chen(陈剑锋)1,†, Lihong Hong(洪丽红)1, Li Long(龙利)1, and Zhi-Yuan Li(李志远)1,2,‡
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China;
2 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
Abstract  Birefringence production of light by natural birefringent crystal has long been studied and well understood. Here, we develop a simple and comprehensive rigorous electromagnetic theory that allows one to build up the complete picture about the optics of crystals in a friendly way. This theory not only yields the well-known refraction angle and index of ellipse for birefringence crystal, but also discloses many relevant physical and optical quantities that are rarely studied and less understood. We obtain the reflection and transmission coefficient for amplitude and intensity of light at the crystal surface under a given incident angle and show the electromagnetic field distribution within the crystal. We derive the wavefront and energy flux refraction angle of light and the corresponding phase and ray refractive index. We find big difference between them, where the phase refractive index satisfies the classical index of ellipse and Snell's law, while the ray refractive index does not. Moreover, we disclose the explicit expressions for the zero-reflection Brewster angle and the critical angle for total internal reflection. For better concept demonstration, we take a weak birefringent crystal of lithium niobate and a strong birefringent crystal tellurium as examples and perform simple theoretical calculations. In addition, we perform experimental measurement upon z-cut lithium niobate plate and find excellent agreement between theory and experiment in regard to the Brewster angle. Our theoretical and experimental results can help to construct a clear and complete picture about light transport characteristics in birefringent crystals, and may greatly facilitate people to find rigorous solution to many light-matter interaction processes happening within birefringent crystals, e.g., nonlinear optical interactions, with electromagnetic theory.
Keywords:  birefringence crystal      comprehensive solution      complete physical picture  
Received:  14 September 2021      Revised:  07 December 2021      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2018YFA 0306200),the National Natural Science Foundation of China (Grant No.11974119),the Science and Technology Project of Guangdong Province,China (Grant No.2020B010190001),and the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No.2016ZT06C594).
Corresponding Authors:  Zhi-Yuan Li,E-mail:phzyli@scut.edu.cn     E-mail:  phzyli@scut.edu.cn
About author:  2021-12-31

Cite this article: 

Jianbo Pan(潘剑波), Jianfeng Chen(陈剑锋), Lihong Hong(洪丽红), Li Long(龙利), and Zhi-Yuan Li(李志远) A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals 2022 Chin. Phys. B 31 054201

[1] Born M and Wolf E 1999 Principles of Optics (Cambridge: The United Kingdom at the University Press) pp. 790-837
[2] Hecht E and Zajac A 2002 Optics (San Francisco: Addison Wesley) pp. 86-141, 552-568
[3] Liang Q T 2012 Physical Optics (Beijing: Publishing House of Electronics Industry) pp. 287-306
[4] Zhao K H 2004 Optics (Beijing: Higher Education Press) pp. 289-298
[5] Shen Y R 1984 The Principles of Nonlinear Optics (New Jersey: Wiley) pp. 286-302
[6] Boyd R W 2008 Nonlinear Optics (San Diego: Academic Press) pp. 69-74
[7] Simon M C 1983 Appl. Opt. 22 354
[8] Simon M C and Perez L I 1991 J. Mod. Opt. 38 503
[9] Liang Q T 1990 Appl. Opt. 29 1008
[10] Zhang W Q 1992 Appl. Opt. 31 7328
[11] Avendaño-Alejo M Stavroudis O N and Goitia A R B 2002 J. Opt. Soc. Am. A 19 1668
[12] Avendaño-Alejo M and Stavroudis O N 2002 J. Opt. Soc. Am. A 19 1674
[13] Wang P 2018 Appl. Opt. 57 4950
[14] Jia Y, Ren P and Fan C 2020 Chin. Phys. B 29 104210
[15] Crosse J A and Moon P 2021 Chin. Phys. B 30 077803
[16] Jun Xian S, Wen Chao Z, Wan X, Qing Z, Xia J, Dong Dong L, Chang Chun Y and Dao Hua Z 2015 Chin. Phys. Lett. 32 094204
[17] Jackson J D 1999 Classical Electrodynamics (New Jersey: Wiley) pp. 145-169
[1] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[2] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[5] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
[6] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[12] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[13] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[14] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[15] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
No Suggested Reading articles found!