Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延)1, Keyun Zhang(张克赟)1, Chun Luo(罗纯)1, Xiaoyan Lin(林晓艳)1, Meisong Liao(廖梅松)2,†, Guoying Zhao(赵国营)3, and Yongzheng Fang(房永征)3,‡
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China; 2 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 3 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Abstract Theoretical simulations about manipulating vector solitons with super-sech pulse shapes are conducted based on an optical fiber system. By changing the temporal pulses' parameters when the orthogonally polarized pulses have the same or different input central wavelengths, the output modes in orthogonal directions will demonstrate different properties. When the input orthogonal modes have the same central wavelength, the “2+2” pseudo-high-order vector soliton can be generated when the time delay is changed. While under the condition of different central wavelengths, orthogonal pulses with multiple peaks accompanied with two wavelengths can be achieved through varying the projection angle, time delay or phase difference. Our simulations are helpful to the study of optical soliton dynamics in optical fiber systems.
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2018YFB0504500),the National Natural Science Foundation of China (Grant Nos.62105208,51972317,and 61875052),Shanghai Sailing Program (Grant No.20YF1447500),Special Project for Industrialization of High-tech Science and Technology between Jilin Province and the Chinese Academy of Sciences (Grant No.2021SYHZ0029),and Natural Science Foundation of Shanghai (Grant No.22ZR1470700).
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征) Manipulating vector solitons with super-sech pulse shapes 2022 Chin. Phys. B 31 054203
[1] Wang L L, Luan Z T, Zhou Q, Biswas A, Alzahrani A K and Liu W J 2021 Nonlinear Dyn.104 2613 [2] Wu C H, Fang Z W, Fang J T, Chen G and Cheng Y 2021 Chin. Phys. B30 054206 [3] Wang X D, Yang S M, Sun M Q, Geng X, Pan J S, Miao S G and Li S W 2021 Chin. Phys. B30 064212 [4] Yan Y Y and Liu W J 2021 Chin. Phys. Lett.38 094201 [5] Zhang X M, Qin Y H, Ling L M and Zhao L C 2021 Chin. Phys. Lett.38 090201 [6] Zhou Y, Zhang R L, Li X, Kuan P W, He D Y, Hou J S, Liu Y F, Fang Y Z and Liao M S 2019 Chin. Phys. B28 094203 [7] Zou J H, Ruan Q J, Zhang X J, Xu B, Cai Z P and Luo Z Q 2020 Nanophotonics9 2273 [8] Huang Q Q, Dai L L, Rozhin A, Al Araimi M and Mou C B 2021 Opt. Lett.46 2638 [9] Zhou Y, Fang C J, Zhang Z X, Tong L, Ma X H, Zhang W, Yu R H, Gao W Q, Xu J, Liao M S, Suzuki T and Ohishi Y 2021 Jpn. J. Appl. Phys.60 011001 [10] Chang S, Wang Z K, Wang D N, Zhu T Y, Hua K and Gao F 2021 Opt. Laser Technol.140 107081 [11] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett.121 023905 [12] Liu X M, Popa D and Akhmediev N 2019 Phys. Rev. Lett.123 093901 [13] Liu X M and Pang M 2019 Laser Photon. Rev.13 1800333 [14] Ayela A M, Edah G, Elloh C, Biswas A, Ekici M, Alzahrani A K, Belic M R and Milivoj R 2021 Phys. Lett. A396 127231 [15] Wu Z C, Wei Q, Zhan B Y, Huang T Y, Zhu M, Li L and Shum P P 2021 IEEE Photonics J.13 1501108 [16] Lin W, Wang W L, He B, Chen X W, Hu X, Guo Y K, Xu Y, Wei X M and Yang Z M 2021 Opt. Express29 12049 [17] Cui Y D, Zhang Y S, Song Y J, Huang L, Tong L M, Qiu J R and Liu X M 2021 Laser Photon. Rev.15 2000216 [18] Jin X X, Wu Z C, Zhang Q, Li L, Tang D Y, Shen D Y, Fu S N, Liu D M and Zhao L M 2015 IEEE Photonics J.7 7102206 [19] Jin X X, Wu Z C, Li L, Zhang Q, Tang D Y, Shen D Y, Fu S N, Liu D M and Zhao L M 2016 IEEE Photonics J.8 1501206 [20] Zhou Y, Li Y F, Zhang R L, Wang T X, Bi W J, Li X, Kuan P W, Fang Y Z and Liao M S 2019 Optik194 163132 [21] Zhou Y, Li Y F, Li X, Zhao G Y, Hou J S, Zou J, Fang Y Z and Liao M S 2020 Optik203 163925 [22] Zhou Y, Li Y F, Li X, Liao M S, Hou J S and Fang Y Z 2020 Chin. Phys. B29 054202 [23] Zhou Y, Li Y F, Li Y G, Li X, Zhao G Y, Liao M S and Fang Y Z 2020 Optik224 165699 [24] Zhou Y, Lin X Y, Liao M S, Zhao G Y and Fang Y Z 2021 Optik244 167616 [25] Zhou Y, Li X, Zhao G Y, Liao M S and Fang Y Z 2021 Optik227 166022 [26] Zhou Y, Lin X Y, Liao M S, Zhao G Y and Fang Y Z 2021 Chin. Phys. B30 034208 [27] Zhou Y, Lin X Y, Li Y G, Liao M S, Zhao G Y and Fang Y Z 2021 Optik240 166832 [28] Zhou Y, Lin X Y, Liao M S, Zhao G Y and Fang Y Z 2021 Optik242 167185
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.