Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050308    DOI: 10.1088/1674-1056/ac5a3f
GENERAL Prev   Next  

Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle

Jv-Jie Wang(王莒杰)1, Zhao Dou(窦钊)1,†, Xiu-Bo Chen(陈秀波)1, Yu-Ping Lai(赖裕平)2, and Jian Li(李剑)2
1 Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We propose an efficient quantum private comparison protocol firstly based on one direction quantum walks. With the help of one direction quantum walk, we develop a novel method that allows the semi-honest third party to set a flag to judge the comparing result, which improves the qubit efficiency and the maximum quantity of the participants' secret messages. Besides, our protocol can judge the size of the secret messages, not only equality. Furthermore, the quantum walks particle is disentangled in the initial state. It only requires a quantum walks operator to move, making our proposed protocol easy to implement and reducing the quantum resources. Through security analysis, we prove that our protocol can withstand well-known attacks and brute-force attacks. Analyses also reveal that our protocol is correct and practical.
Keywords:  quantum private comparison protocol      one direction quantum walks      efficiency      brute-force attack  
Received:  17 December 2021      Revised:  17 February 2022      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Key R&D Program of China (Grant No.2020YFB1805405),the 111 Project (Grant No.B21049),the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (Grant No.2019BDKFJJ014),and the Fundamental Research Funds for the Central Universities,China (Grant No.2020RC38).
Corresponding Authors:  Zhao Dou,     E-mail:
About author:  2022-3-3

Cite this article: 

Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑) Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle 2022 Chin. Phys. B 31 050308

[1] Yao A C 1982 23rd annual symposium on foundations of computer science (sfcs 1982), November 3-5, 1982 Chicago, IL, p. 160
[2] Benaloh J C and Yung M 1986 Proceedings of the fifth annual ACM symposium on Principles of distributed computing, August 11-13, 1986, Calgary Alberta, Canada, p. 52
[3] Li T, Yang H, Wang Y and Xu Q 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, March 24-27, 2015, Gwangiu, South Korea, p. 293
[4] Pu H, Cui Z, Liu T, Wu Z and Du H 2021 Int. J. Netw. Secur. 23 97
[5] Karnin E, Greene J and Hellman M 1983 IEEE Trans. Inf. Theory 29 35
[6] Beimel A 2011 International conference on coding and cryptology, May, 2011, Berlin, Heidelberg, p. 11
[7] Fălămaş D E, Marton K and Suciu A 2021 Symmetry 13 894
[8] Rieffel E and Polak W 2000 ACM Comput Surv 32 300
[9] Bennet C 1984 Systems and Signal Processing, Systems and Signal Processing, December 10-12, 1984, Bangalore, India, p. 175
[10] Ekert A K 1991 Phys. Rev. Lett. 67 661
[11] Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
[12] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[13] Sekga C and Mafu M 2021 Chin. Phys. B 30 120301
[14] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[15] Zhang Z, Yang J, Man Z and Li Y 2005 Eur. Phys. J. D 33 133
[16] Hwang T, Hwang C C and Li C M 2011 Phys. Scr. 83 045004
[17] Zhou Y, Yu J, Yan Z, Jia X, Zhang J, Xie C and Peng K 2018 Phys. rev. lett. 121 150502
[18] Wu X, Wang Y and Huang D 2020 Phys. Rev. A 101 022301
[19] Long G L, Deng F G, Wang C, Li X H, Wen K and Wang W Y 2007 Front. Phys. China 2 251
[20] Long G L, Wang C, Deng F G and Zheng C 2013 Conference on Coherence and Quantum Optics, June 17-20, 2013, Rochester, New York, United States, p. M6. 42
[21] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. rev. lett. 118 220501
[22] Zhu F, Zhang W, Sheng Y and Huang Y 2017 Sci. Bull. 62 1519
[23] Yang Y G and Wen Q Y 2009 J. Phys. A: Math. Theor. 42 055305
[24] Liu W, Wang Y B and Cui W 2012 Commun. Theor. Phys. 57 583
[25] Zhang W W, Li D, Zhang K J and Zuo H J 2013 Quantum inf. process 12 2241
[26] Lin S, Sun Y, Liu X F and Yao Z Q 2013 Quantum inf. process 12 559
[27] Jiang L Z 2020 Quantum inf. process 19 1
[28] Lang Y F 2021 Int. J. Theor. Phys. 60 4030
[29] Zhou N R, Xu Q D, Du N S and Gong L H 2021 Quantum inf. Process 20 1
[30] Chen X B, Xu G, Niu X X, Wen Q Y and Yang Y X 2010 Opt. Commun. 283 1561
[31] Liu W and Wang Y B 2012 Int. J. Theor. Phys. 51 3596
[32] Xu Q D, Chen H Y, Gong L H and Zhou N R 2020 Int. J. Theor. Phys. 59 1798
[33] Huang X, Zhang S B and Cheng W 2021 IEEE AFRICON 2021 September 13-15, 2021, Arusha, Tanzania, p. 1
[34] Liu W and Yin H W 2021 Mod. Phys. Lett. 36 2150083
[35] Guo F Z, Gao F, Qin S J, Zhang J and Wen Q Y 2013 Quantum inf. process 12 2793
[36] Ji Z X and Ye T Y 2017 Quantum Inf. Process 16 1
[37] Huang X, Zhang S B, Chang Y, Hou M and Cheng W 2021 Int. J. Theor. Phys. 60 3783
[38] Ji Z, Fan P and Zhang H 2022 Physica. A 585 126400
[39] Jia H Y, Wen Q Y, Li Y B and Gao F 2012 Int. J. Theor. Phys. 51 1187
[40] Chang Y J, Tsai C W and Hwang T 2013 Quantum inf. process 12 1077
[41] Yang Y G, Xia J, Jia X, Shi L and Zhang H 2012 Int. J. Quantum Inf. 10 1250065
[42] Liu B, Gao F, Jia H y, Huang W, Zhang W W and Wen Q Y 2013 Quantum inf. process 12 887
[43] Liu B, Xiao D, Huang W, Jia H Y and Song T T 2017 Quantum Inf. Processing 16 180
[44] Pan H M 2018 Int. J. Theor. Phys. 57 3389
[45] Yan-Feng L 2018 Int. J. Theor. Phys. 57 3048
[46] Lin P H, Hwang T and Tsai C W 2019 Quantum Inf. Processing 18 1
[47] Gao F, Wen Q Y and Zhu F C 2007 Phys. Lett. A 360 748
[48] Chen F L, Zhang H, Chen S G and Cheng W T 2021 Quantum Inf. Processing 20 178
[49] Xue P, Qin H, Tang B, Zhan X, Bian Z H and Li J 2014 Chin. Phys. B 23 110307
[50] Li D, Michael M G, Zhang W W and Zhang K J 2015 Chin. Phys. B 24 050305
[51] Li T Y, Zhang Y S and Yi W 2021 Chin. Phys. Lett 38 030301
[52] Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
[53] Mohseni M, Rebentrost P, Lloyd S and Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106
[54] Wen Q, Qin S and Gao F 2014 Journal of Cryptologic Research 1 200
[55] Hao Q and Xue P 2015 Chin. Phys. B 25 010501
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[3] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[4] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[5] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[6] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[7] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[8] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[9] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[10] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[11] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[12] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[13] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[14] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[15] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
No Suggested Reading articles found!