Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 053701    DOI: 10.1088/1674-1056/ac4231
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer

Eng Boon Ng and C. H. Raymond Ooi
Department of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia
Abstract  We consider an extremely intense laser, enclosed by an atom interferometer. The gravitational potential generated from the high-intensity laser is solved from the Einstein field equation under the Newtonian limit. We compute the strength of the gravitational force and study the feasibility of measuring the force by the atom interferometer. The intense laser field from the laser pulse can induce a phase change in the interferometer with Bose-Einstein condensates. We push up the sensitivity limit of the interferometer with Bose-Einstein condensates by spin-squeezing effect and determine the sensitivity gap for measuring the gravitational effect from intense laser by atom interferometer.
Keywords:  intense laser field      atom interferometer      Bose-Einstein condensates      spin-squeezing  
Received:  03 August 2021      Revised:  01 December 2021      Accepted manuscript online: 
PACS:  37.25.+k (Atom interferometry techniques)  
  67.85.-d (Ultracold gases, trapped gases)  
Corresponding Authors:  Eng Boon Ng,E-mail:engboon@live.com.my;C.H.Raymond Ooi,E-mail:rooi@um.edu.my     E-mail:  engboon@live.com.my;rooi@um.edu.my
About author:  2021-12-11

Cite this article: 

Eng Boon Ng and C. H. Raymond Ooi Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer 2022 Chin. Phys. B 31 053701

[1] Wang J 2015 Chin. Phys. B 24 053702
[2] Abbott B P et al. 2016 Phys. Rev. Lett. 116 061102
[3] Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M and Tino G 2014 Nature 510 518
[4] Hardman K S, Everitt P J, McDonald G D, Manju P, Wigley P B, Sooriyabandara M A, Kuhn C C N, Debs J E, Close J D and Robins N P 2016 Phys. Rev. Lett. 117 138501
[5] Bertotti B 1959 Phys. Rev. 116 1331
[6] Ji P, Bai Y and Wang L 2007 Phys. Rev. D 75 024010
[7] Gerstner E 2007 Nature 446 16
[8] Maine P, Strickland D, Bado P, Pessot M and Mourou G 1988 IEEE J. Quantum Electron. 24 398
[9] Weber S, Bechet S, Borneis S et al. 2017 Matter and Radiation at Extreme 2 149
[10] Malkin V M, Shvets G and Fisch N J 1999 Phys. Rev. Lett. 82 4448
[11] Toroker Z, Malkin V M and Fisch N J 2012 Phys. Rev. Lett. 109 085003
[12] Mourou G A, Fisch N J, Malkin V M, Toroker Z, Khazanov E A, Sergeev A M, Tajima T and Le Garrec B 2012 Opt. Commun. 285 720
[13] Tajima T and Mourou G 2002 Phys. Rev. ST Accel. Beams 5 031301
[14] Mourou G, Mironov S, Khazanov E and Sergeev A 2014 Eur. Phys. J. Spec. Top. 223 1181
[15] Tolman R C, Ehrenfest P and Podolsky B 1931 Phys. Rev. 37 602
[16] Scully M O 1979 Phys. Rev. D 19 3582
[17] Ng K S and Raymond Ooi C H 2013 Laser Phys. 23 035003
[18] Bonnor W B 1969 Commun. Math. Phys. 13 163
[19] Rätzel D, Wilkens M and Menzel R 2016 New J. Phys. 18 023009
[20] Schneiter F, Rätzel D and Braun D 2019 Class. Quantum Gravity 36 119501
[21] Rätzel D and Fuentes I 2019 J. Phys. Commun. 3 025009
[22] Flanagan É É and Hughes S A 2005 New J. Phys. 7 204
[23] Arfken G B and Weber H J 2011 Mathematical Methods for Physicists (Amsterdam: Elsevier Academic Press)
[24] Bao W and Cai Y 2013 Kinet. Relat. Models 6 1
[25] Di Nicola J M 2018 Nucl. Fusion 59 032004
[26] Jourdain N, Chaulagain U, Havlik M, Kramer D, Kumar D, Majerova I, Tikhonchuk V, Korn G and Weber S 2021 Matter and Radiation at Extreme 6 015401
[27] Ji P and Bai Y 2006 Eur. Phys. J. C 46 817
[28] Sabín C, Bruschi D E, Ahmadi M and Fuentes I 2014 New J. Phys. 16 085003
[29] Rätzel D, Howl R, Lindkvist J and Fuentes I 2018 New J. Phys. 20 073044
[30] Altin P A, McDonald G, Dring D, Debs J E, Barter T H, Robins N P, Close J D, Haine S A, Hanna T M and Anderson R P 2011 New J. Phys. 13 119401
[31] Szigeti S S, Nolan S P, Close J D and Haine S A 2020 Phys. Rev. Lett. 125 100402
[32] Gupta S, Leanhardt A E, Cronin A D, Pritchard D E and Acad C R 2001 Comptes Rendus de l'Academie des Sciences-Series IV: Physics, Astrophysics 2 479
[33] Gupta S, Dieckmann K, Hadzibabic Z and Pritchard D E 2002 Phys. Rev. Lett. 89 140401
[34] Vaishnav J, Ruseckas J, Clark C and Juzeliūnas G 2008 Phys. Rev. Lett. 101 265302
[35] Goldman N, Juzeliūnas G, öhberg P and Spielman I 2014 Rep. Prog. Phys. 77 126401
[36] Vaishnav J Y and Clark C W 2008 Phys. Rev. Lett. 100 153002
[37] Jacob A, öhberg P, Juzeliūnas G and Santos L 2007 Appl. Phys. B 89 439
[38] Ramachandhran B, Opanchuk B, Liu X J, Pu H, Drummond P D and Hu H 2012 Phys. Rev. A 85 023606
[39] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nature Mater. 14 871
[40] Dowling J 1998 Phys. Rev. A 57 4736
[41] Jamison A, Kutz J and Gupta S 2011 Phys. Rev. A 84 043643
[42] Caves C M 1981 Phys. Rev. D 23 1693
[43] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[44] Huang Y and Hu Z D 2015 Sci. Rep. 5 8006
[45] Huang X Y, Sun F X, Zhang W, He Q Y and Sun C P 2017 Phys. Rev. A 95 013605
[46] Chen L, Zhang Y and Pu H 2020 Phys. Rev. A 102 023317
[47] He Q Y, Vaughan T G, Drummond P D and Reid M D 2012 New J. Phys. 14 093012
[48] Ma J, Wang X, Sun C and Nori F 2011 Phys. Rep. 509 89
[49] Storey P and Cohen-Tannoudji C 1994 Journal De Physique II 4 1999
[50] Fattori M, D'Errico C, Roati G, et al. 2008 Phys. Rev. Lett. 100 080405
[51] Berrada T, van Frank S, Bücker R, Schumm T, Schaff J and Schmiedmayer J 2013 Nat. Commun. 4 2077
[52] Butler A, Spence D J and Hooker S M 2002 Phys. Rev. Lett. 89 185003
[53] Wen Q 2014 Opt. Express 22 14782
[54] Spengler F, Rätzel D and Braun D 2022 New J. Phys. in press
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[5] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[6] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[7] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[8] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[9] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[10] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[11] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[12] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[13] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[14] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[15] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
No Suggested Reading articles found!