Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070305    DOI: 10.1088/1674-1056/ab969a
Special Issue: SPECIAL TOPIC — Ultracold atom and its application in precision measurement
SPECIAL TOPIC—Ultracold atom and its application in precision measurement Prev   Next  

Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer

Wei-Tao Duan(段维涛)1,2, Chuan He(何川)1,2, Si-Tong Yan(闫思彤)1,3, Yu-Hang Ji(冀宇航)1, Lin Zhou(周林)1,2,3, Xi Chen(陈曦)1,2,3, Jin Wang(王谨)1,2,3, Ming-Sheng Zhan(詹明生)1,2,3
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China;
2 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Center for Cold Atoms Physics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  Coriolis effect is an important error source in the weak equivalence principle (WEP) test using atom interferometer. In this paper, the problem of Coriolis error in WEP test is studied theoretically and experimentally. In theoretical simulation, the Coriolis effect is analyzed by establishing an error model. The measurement errors of Eötvös coefficient (η) in WEP test related to experimental parameters, such as horizontal-velocity difference and horizontal-position difference of atomic clouds, horizontal-position difference of detectors, and rotation compensation of Raman laser's mirror are calculated. In experimental investigation, the position difference between 85Rb and 87Rb atomic clouds is reduced to 0.1 mm by optimizing the experimental parameters, an alternating detection method is used to suppress the error caused by detection position difference, thus the Coriolis error related to the atomic clouds and detectors is reduced to 1.1×10-9. This Coriolis error is further corrected by compensating the rotation of Raman laser's mirror, and the total uncertainty of η measurement related to the Coriolis effect is reduced as δη=4.4×10 -11.
Keywords:  atom interferometer      weak equivalence principle test      Coriolis effect  
Received:  31 March 2020      Revised:  04 May 2020      Accepted manuscript online: 
PACS:  03.75.Dg (Atom and neutron interferometry)  
  06.30.Gv (Velocity, acceleration, and rotation)  
  37.25.+k (Atom interferometry techniques)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302002), the National Natural Science Foundation of China (Grant Nos. 91736311 and 11574354), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21010100), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2016300).
Corresponding Authors:  Lin Zhou, Jin Wang     E-mail:;

Cite this article: 

Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生) Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer 2020 Chin. Phys. B 29 070305

[1] Wang J 2015 Chin. Phys. B 24 053702
[2] Kasevich M A and Chu S 1991 Phys. Rev. Lett. 67 181
[3] Peters A, Chung K Y and Chu S 1999 Nature 400 849
[4] Zhou L, Xiong Z Y, Yang W, Tang B, Peng W C, Wang Y B, Xu P, Wang J and Zhan M S 2011 Chin. Phys. Lett. 28 013701
[5] Merlet S, Bodart Q, Malossi N, Landragin A, Pereira Dos Santos F, Gitlein O and Timmen L 2010 Metrologia 47 L9
[6] Poli N, Wang F Y, Tarallo M G, Alberti A, Prevedelli M and Tino G M 2011 Phys. Rev. Lett. 106 038501
[7] Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z and Luo J 2013 Phys. Rev. A 88 043610
[8] Bidel Y, Carraz O, Charriére R, Cadoret M, Zahzam N and Bresson A 2013 Appl. Phys. Lett. 102 144107
[9] Wu B, Wang Z, Cheng B, Wang Q, Xu A and Lin Q 2014 Metrologia 51 452
[10] Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y and Li C J 2018 Metrologia 55 360
[11] Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J and Zhan M S 2019 Metrologia 56 045012
[12] Snadden M J, McGuirk J M, Bouyer P, Haritos K G and Kasevich M A 1998 Phys. Rev. Lett. 81 971
[13] Duan X C, Zhou M K, Mao D K, Yao H B, Deng X B, Luo J and Hu Z K 2014 Phys. Rev. A 90 023617
[14] Wang Y P, Zhong J Q, Song H W, Zhu L, Li Y M, Chen X, Li R B, Wang J and Zhan M S 2017 Phys. Rev. A 95 053612
[15] Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Borde C J, Landragin A and Bouyer P 2006 Phys. Rev. Lett. 97 010402
[16] Tackmann G, Berg P, Schubert C, Abend S, Gilowski M, Ertmer W and Rasel E M 2012 New J. Phys. 14 015002
[17] Dickerson S M, Hogan J M, Sugarbaker A, Johnson D M S and Kasevich M A 2013 Phys. Rev. Lett. 111 083001
[18] Yao Z W, Lu S B, Li R B, Wang K, Cao L, Wang J and Zhan M S 2016 Chin. Phys. Lett. 33 083701
[19] Yao Z W, Lu S B, Li R B, Luo J, Wang J and Zhan M S 2018 Phys. Rev. A 97 013620
[20] Fray S, Diez C A, Hänsch T W and Weitz M 2004 Phys. Rev. Lett. 93 240404
[21] Bonnin A, Zahzam N, Bidel Y and Bresson A 2013 Phys. Rev. A 88 043615
[22] Schlippert D, Hartwig J, Albers H, Richardson L L, Schubert C, Roura A, Schleich W P, Ertmer W and Rasel E M 2014 Phys. Rev. Lett. 112 203002
[23] Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X and Tino G M 2014 Phys. Rev. Lett. 113 023005
[24] Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z and Zhan M S 2015 Phys. Rev. Lett. 115 013004
[25] Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévéque T, Landragin A and Bouyer P 2016 Nat. Commun. 7 13786
[26] Duan X C, Zhou M K, Deng X B, Yao H B, Shao C G, Luo J and Hu Z K 2016 Phys. Rev. Lett. 117 023001
[27] Rosi G, D'Amico G, Cacciapuoti L, Sorrentino F, Prevedelli M, Zych M, Brukner Č and Tino G M 2017 Nat. Commun. 8 15529
[28] Zhang K, Zhou M K, Cheng Y, Chen L L, Luo Q, Xu W J, Cao L S, Duan X C and Hu Z K 2020 Chin. Phys. Lett. 37 043701
[29] Zhou L, He C, Yan S T, Chen X, Duan W T, Xu R D, Zhou C, Ji Y H, Bathwal S, Wang Q, Hou Z, Xiong Z Y, Gao D F, Zhang Y Z, Ni W T, Wang J and Zhan M S 2019 arXiv:1904.07096 [quant-ph]
[30] Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Müller J and Peters A 2016 J. Phys.: Conf. Ser. 723 012050
[31] Fu Z J, Wu B, Cheng B, Zhou Y, Weng K, Zhu D, Wang Z and Lin Q 2019 Metrologia 56 025001
[32] Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S and Müller H 2019 Sci. Adv. 5 eaax0800
[33] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[34] Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S and Pereira Dos Santos F 2011 New J. Phys. 13 065025
[35] Lan S Y, Kuan P C, Estey B, Haslinger P and Müller H 2012 Phys. Rev. Lett. 108 090402
[36] Bongs K, Launay R and Kasevich M A 2006 Appl. Phys. B 84 599
[37] Farah T, Gillot P, Cheng B, Landragin A, Merlet S and Pereira Dos Santos F 2014 Phys. Rev. A 90 023606
[38] Hogan J M, Johnson D M S and Kasevich M A 2008 arXiv:0806.3261v1 [physics.atom-ph]
[39] Zhou L, Xiong Z Y, Yang W, Tang B, Peng W C, Hao K, Li R B, Liu M, Wang J and Zhan M S 2011 Gen. Relat. Gravit. 43 1931
[40] Foster G T, Fixler J B, McGuirk J M and Kasevich M A 2002 Opt. Lett. 27 951
[1] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[2] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[3] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[4] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[5] Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation
Jian-Gong Hu(胡建功), Xi Chen(陈曦), Li-Yong Wang(王立勇), Qing-Hong Liao(廖庆洪), and Qing-Nian Wang(汪庆年)$. Chin. Phys. B, 2020, 29(11): 110305.
[6] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[7] Correlation method estimation of the modulation signal in the weak equivalence principle test
Jie Luo(罗杰), Liang-Cheng Shen(沈良程), Cheng-Gang Shao(邵成刚), Qi Liu(刘祺), Hui-Jie Zhang(张惠捷). Chin. Phys. B, 2018, 27(8): 080402.
[8] Comparison of the sensitivities for atom interferometers in two different operation methods
Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhu Zhu(祝竺), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2018, 27(1): 013701.
[9] Effect of gravity gradient in weak equivalence principle test
Jia-Hao Xu(徐家豪), Cheng-Gang Shao(邵成刚), Jie Luo(罗杰), Qi Liu(刘祺), Lin Zhu(邾琳), Hui-Hui Zhao(赵慧慧). Chin. Phys. B, 2017, 26(8): 080401.
[10] Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers
Xiao-Bing Deng(邓小兵), Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2017, 26(4): 043702.
[11] Investigation of the thermal adaptability for a mobile cold atom gravimeter
Qi-Yu Wang(王启宇), Zhao-Ying Wang(王兆英), Zhi-Jie Fu(付志杰), Qiang Lin(林强). Chin. Phys. B, 2016, 25(12): 123701.
[12] Wave–particle duality in a Raman atom interferometer
Jia Ai-Ai (贾爱爱), Yang Jun (杨俊), Yan Shu-Hua (颜树华), Hu Qing-Qing (胡青青), Luo Yu-Kun (罗玉昆), Zhu Shi-Yao (朱诗尧). Chin. Phys. B, 2015, 24(8): 080302.
[13] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang (周敏康), Duan Xiao-Chun (段小春), Chen Le-Le (陈乐乐), Luo Qin (罗覃), Xu Yao-Yao (徐耀耀), Hu Zhong-Kun (胡忠坤). Chin. Phys. B, 2015, 24(5): 050401.
[14] Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation
Cheng Bing (程冰), Wang Zhao-Ying (王兆英), Xu Ao-Peng (许翱鹏), Wang Qi-Yu (王启宇), Lin Qiang (林强). Chin. Phys. B, 2015, 24(11): 113704.
[15] Elementary analysis of interferometers for wave–particle duality test and the prospect of going beyond the complementarity principle
Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(11): 110309.
No Suggested Reading articles found!