Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军)1,2,3, Feng Tang(唐烽)3, Jun Ma(马骏)1,2, Bing Han(韩冰)1,2, Cong Wei(魏聪)1,2, Qing-Zhi Li(李青芝)3, Jun Chen(陈骏)3, Ning Zhang(张宁)3, Xin Ye(叶鑫)3,†, Wan-Guo Zheng(郑万国)‡4,‡, and Ri-Hong Zhu(朱日宏)1,2,§
1 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2 MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing 210094, China; 3 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; 4 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract Once the metalenses are fabricated, the functions of most metalenses are invariable. The tunability and reconfigurability are useful and cost-saving for metalenses in realistic applications. We demonstrate this tunability here via a novel hybrid metalens with the strategic placement of an ultra-thin VO2 layer. The hybrid metalens is capable of dynamically modulating the focusing intensity of transmitted light at a wavelength of 1550 nm, and demonstrate a 42.28% focusing efficiency of the incident light and 70.01% modulation efficiency. The hybrid metalens' optothermal simulations show an optothermal conversion process of dynamic focusing, and a maximum laser density of 1.76×103 W/cm2 can be handled at an ambient temperature lower than 330 K. The hybrid metalens proposed in this work, a light-dose sensitive tunable smart metalens that can protect other instruments/systems or materials from being damaged, has its specific applications such as in anti-satellite blinding, bio-imaging, etc.
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61875087) and the Innovation and Development Foundation of China Academy of Engineering Physics (Grant No.CX20200020).
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国)‡, and Ri-Hong Zhu(朱日宏) Temperature-responded tunable metalenses based on phase transition materials 2022 Chin. Phys. B 31 054216
[1] Liu W, Cheng H, Tian J and Chen S 2020 Adv. Phys. X5 1742584 [2] Chen S, Li Z, Liu W, Cheng H and Tian J 2019 Adv. Mater.31 1802458 [3] He Q, Sun S and Zhou L 2019 Research2 1849272 [4] Ou J Y, Plum E, Zhang J and Zheludev N I 2013 Nat. Nanotechnol.8 252 [5] Zheludev N I and Plum E 2016 Nat. Nanotechnol.11 16 [6] Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X and Averitt R D 2009 Phys. Rev. Lett.103 147401 [7] Khodasevych I E, Shah C M, Sriram S, Bhaskaran M, Withayachumnankul W, Ung B S Y, Lin H, Rowe W S T, Abbott D and Mitchell A 2012 Appl. Phys. Lett.100 061101 [8] Ou J Y, Plum E, Jiang L and Zheludev N I 2011 Nano Lett.11 2142 [9] Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T, Teng J H, Zhang X H, Guo H C, Tanoto H, Mei T, Lo G Q and Kwong D L 2011 Adv. Mater.23 1792 [10] Fu Y H, Liu A Q, Zhu W M, Zhang X M, Tsai D P, Zhang J B, Mei T, Tao J F, Guo H C, Zhang X H, Teng J H, Zheludev N I, Lo G Q and Kwong D L 2011 Adv. Funct. Mater.21 3589 [11] Powell D A, Hannam K, Shadrivov I V and Kivshar Y S 2011 Phys. Rev. B83 235420 [12] Tseng M L, Hsiao H H, Chu C H, Chen M K, Sun G, Liu A Q and Tsai D P 2018 Adv. Opt. Mater.6 1800554 [13] Cui T, Bai B and Sun H B 2019 Adv. Funct. Mater.29 1806692 [14] Liu H, Lu J and Wang X R 2017 Nanot.29 024002 [15] Forouzmand A, Salary M M, Kafaie Shirmanesh G, Sokhoyan R, Atwater H A and Mosallaei H 2019 Nanophotonics8 415 [16] Choudhury S M, Wang D, Chaudhuri K, DeVault C, Kildishev A V, Boltasseva A and Shalaev V M 2018 Nanophotonics7 959 [17] Yin X H, Steinle T, Huang L L, Taubner T and Wuttig M 2017 Light-Sci. Appl.6 e17016 [18] Bai W, Yang P, Wang S, Huang J, Chen D, Zhang Z, Yang J and Xu B 2019 Appl. Sci.9 4927 [19] Bai W, Yang P, Wang S, Huang J, Chen D, Zhang Z, Yang J and Xu B 2019 Nanomaterials9 993 [20] Chen L, Hao Y, Zhao L, Wu R, Liu Y, Wei Z, Xu N, Li Z and Liu H 2021 Opt. Express29 9332 [21] Chen W, Chen R, Zhou Y and Ma Y 2019 IEEE Photon. Tech. Lett.31 1187 [22] Wu J, Tang F, Ma J, Li Q, Shang S, Chen J, Wu Y, Wang Y, Ye X, Zheng W and Zhu R 2020 Results Phys.18 103226 [23] Butakov N A, Valmianski I, Lewi T, Urban C, Ren Z, Mikhailovsky A A, Wilson S D, Schuller I K and Schuller J A 2017 ACS Photon.5 371 [24] Rodriguez-Vega M, Simons M T, Radue E, Kittiwatanakul S, Lu J, Wolf S A, Lukaszew R A, Novikova I and Rossi E 2015 Phys. Rev. B92 115420 [25] Ordonez-Miranda J, Ezzahri Y, Joulain K, Drevillon J and Alvarado-Gil J J 2018 Phys. Rev. B98 075144 [26] Palik and Edward D 1985 Handbook of optical constants of solids (Maryland: Academic Press) pp. 554-769 [27] Shang S, Tang F, Ye X, Li Q, Li H, Wu J, Wu Y, Chen J, Zhang Z, Yang Y and Zheng W 2020 Nanomaterials10 103215 [28] Tang F, Ye X, Li Q, Wang Y, Yu H, Wu W, Li B and Zheng W 2020 Results Phys.18 103215
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.