Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 046502    DOI: 10.1088/1674-1056/ac3393
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range

Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军)
Key Laboratory of Materials Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  We report a new type of near-zero thermal expansion material β-CuZnV2O7 in a large temperature range from 173 K to 673 K. It belongs to a monoclinic structure (C2/c space group) in the whole temperature range. No structural phase transition is observed at atmospheric pressure based on the x-ray diffraction and Raman experiment. The high-pressure Raman experiment demonstrates that two structural phase transitions exist at 0.94 GPa and 6.53 GPa, respectively. The mechanism of negative thermal expansion in β-CuZnV2O7 is interpreted by the variations of the angles between atoms intuitively and the phonon anharmonicity intrinsically resorting to the negative Grüneisen parameter.
Keywords:  negative thermal expansion materials      β-CuZnV2O7      expansion mechanism      Raman spectrum  
Received:  18 September 2021      Revised:  19 October 2021      Accepted manuscript online:  27 October 2021
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.66.-f (Structure of specific crystalline solids)  
  62.50.-p (High-pressure effects in solids and liquids)  
  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11874328, 12004339, 11574276, and 21905252), the China Postdoctoral Science Foundation (Grant Nos. 2018M640679, 2019T120629, and 2019M652558), and the Zhongyuan Academician Foundation (Grant No. ZYQR201810163).
Corresponding Authors:  Xiao Ren, Er-Jun Liang     E-mail:  rxphy@zzu.edu.cn;ejliang@zzu.edu.cn

Cite this article: 

Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军) Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range 2022 Chin. Phys. B 31 046502

[1] Liang E J, Sun Q, Yuan H L, Wang J Q, Zeng G J and Gao Q L 2021 Front. Phys. 16 53302
[2] Gao Q L, Wang J, Sanson A, Sun Q, Liang E J, Xing X R and Chen J 2020 J. Am. Chem. Soc. 142 6935
[3] Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J and Liang E J 2016 Chin. Phys. Lett. 33 046503
[4] Liu F S, Chen X P, Xie H X, Ao W Q and Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese)
[5] Xu S, Hu Y M, Liang Y, Shi C F, Su Y L, Guo J, Gao Q L, Chao M J and Liang E J 2020 Chin. Phys. B 29 086501
[6] Hummel F A 2010 J. Am. Ceram. Soc. 34 235
[7] Poowancum A, Matsumaru K and Ishizaki K 2011 J. Am. Ceram. Soc. 94 1354
[8] Duan N, Kameswari U and Sleight A W 2013 J. Am. Chem. Soc. 121 10432
[9] Marinkovic B A, Jardim P M, Avillez R R Rizzo F 2005 Solid State Sci. 7 1377
[10] Evans J S O, Mary T A, Vogt T, Subramanian M A and Sleight A W 1996 Chem. Mater. 8 2809
[11] Khosrovani N, Sleight A W and Vogt T 1997 J. Solid State Chem. 132 355
[12] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[13] Evans J S O, Hanson J C and Sleight A W 1998 Acta Crystall. 54 705
[14] Mittal R, Chaplot S L 2008 Phys. Rev. B 78 174303
[15] Turquat C, Muller C, Nigrelli E, Soubeyroux J L and Nihoul G 2000 Eur. Phys. J. AP 10 15
[16] Hisashige T, Yamaguchi T, Tsuji T and Yamamura Y 2006 J. Ceram. Soc. Jpn. 114 607
[17] Zhang N, Li L, Wu M Y, Li Y X, Feng D S, Liu C Y, Mao Y C, Guo J, Chao M J and Liang E J 2016 J. Eur. Ceram. Soc. 36 2761
[18] Wang H, Yang M J, Guo J, Gao Q L, Jiao Y J, Tang X B, Chao M J and Liang E J 2019 Solid State Ionics 343 115086
[19] Krasnenko T, Medvedeva N and Bamburov V 2010 Adv. Sci. Technol. 63 358
[20] Krasnenko T I, Zolotukhina L V and Andrianova L V 2000 Inorg. Mater. 36 1032
[21] Rotermel M V and Krasnenko T I 2017 Crystall. Rep. 62 703
[22] Shi N K, Sanson A, Gao Q L, Sun Q, Ren Y, Huang Z H, Souza D O, Xing X R and Chen J 2020 J. Am. Chem. Soc. 142 3088
[23] Yuan H L, Yuan B H, Fang L and Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese)
[24] Wei W, Gao Q, Guo J, Chao M J, He L H, Chen J and Liang E J 2020 Appl. Phys. Lett. 116 181902
[25] Wang H, Yang M J, Chao M, Guo J, Tang X B, Jiao Y J and Liang E J 2019 Ceram. Int. 45 9814
[26] Katayama N, Otsuka K, Mitamura M, Yokoyama Y, Okamoto Y and Takenaka K 2018 Appl. Phys. Lett. 113 181902
[27] Wang J P, Chen Q D, Li S L, Ji Y J, Mu W Y, Feng W W, Zeng G J, Liu Y W and Liang E J 2018 Chin. Phys. B 27 066501
[28] He X K, Qi H, Xu Q, Liu X S, Xu L and Yuan B H 2016 Chin. Phys. B 28 056501
[29] Rotermel M V, Krasnenko T I, Petrova S A and Titova S G 2018 Chim. Technol. Acta 5 86
[30] Shi N K, Sanson A, Venier A, Fan L L, Sun C J, Xing X R and Chen J 2020 Chem. Commun. 56 10666
[31] Waal D and Hutter C 1994 Mater. Res. Bull. 29 843
[32] Schindler M and Hawthorne F C 1999 J. Solid State Chem. 146 271
[33] Gao Y X, Wang C Y, Gao Q L, Guo J, Chao M J, Jia Y and Liang E J 2020 Inorg. Chem. 59 18427
[34] Xu J L, Hu L, Song Y Z, Han F, Qiao Y Q, Deng J X, Chen J and Xing X R 2017 J. Am. Ceram. Soc. 100 5385
[35] Gao Q L, Shi X W, Venier A, Carnera A, Huang Q Z, Wu H, Chen J, Sanson A and Liang E J 2020 Inorg. Chem. 59 14852
[36] Zeng G J, Yuan H L, Guo J, Sun Q, Gao Q L, Chao M J, Ren X and Liang E J 2020 Phys. Chem. Chem. Phys. 22 12605
[37] Yuan H L, Wang C Y, Gao Q L, Ge X H, Sun H, Lapidus S H, Guo J, Chao M J, Jia Yu and Laing E J 2020 Inorg. Chem. 59 4090
[38] Zhu Y W, Chen R, Chen L, Chao M J, Guo J, Gao Q L and Laing E J 2021 Solid State Sci. 112 106515
[39] Lucazeau G 2003 J. Raman Spectrosc. 34 478
[40] Ding P, Liang E J, Jia Y and Du Z Y 2008 J. Phys. Condens. Matter. 20 275224
[1] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[2] Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Sai-Lei Li(李赛磊), Yan-Jun Ji(纪延俊), Wen-Ying Mu(穆文英), Wei-Wei Feng(冯伟伟), Gao-Jie Zeng(曾高杰), You-Wen Liu(刘友文), Er-Jun Liang(梁二军). Chin. Phys. B, 2018, 27(6): 066501.
[3] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[4] Near-zero thermal expansion of In2(1-x)(HfMg)xMo3O12 with tailored phase transition
Yong-Guang Cheng(程永光), Yan-Chao Mao(毛彦超), Xain-Sheng Liu(刘献省), Bao-He Yuan(袁保合), Ming-Ju Chao(晁明举), Er-Jun Liang(梁二军). Chin. Phys. B, 2016, 25(8): 086501.
[5] Vibrational features of confined water in nanoporous TiO2 by Raman spectra
Xin Gao(高欣), Qiang Wang(王强), Gang Sun(孙刚), Chen-Xi Li(李晨曦), Lin Hu(胡林). Chin. Phys. B, 2016, 25(2): 026801.
[6] Strain analysis of free-standing strained silicon-on-insulator nanomembrane
Sun Gao-Di (孙高迪), Dong Lin-Xi (董林玺), Xue Zhong-Ying (薛忠营), Chen Da (陈达), Guo Qing-Lei (郭庆磊), Mu Zhi-Qiang (母志强). Chin. Phys. B, 2015, 24(3): 036801.
[7] Synthesis, structure, optical, and electric properties of Ce-doped CuInTe2 compound
Fu Li (付丽), Guo Yong-Quan (郭永权). Chin. Phys. B, 2014, 23(12): 127801.
[8] The effect of anti-hydrogen bond on Fermi resonance: A Raman spectroscopic study of the Fermi doublet ν1ν12 of liquid pyridine
Li Dong-Fei (李东飞), Gao Shu-Qin (高淑琴), Sun Cheng-Lin (孙成林), Li Zuo-Wei (里佐威 ). Chin. Phys. B, 2012, 21(8): 083301.
[9] High-sensitive automatic transient laser-induced breakdown spectroscopy system with high temporal and spatial resolution
Liu Qiao-Jun (刘巧君), S. K. Fong (冯瑞权), Andrew Y. S. Cheng (郑玉臣), Luo Shi-Rong (罗时荣), K. S. Tam (谭建成), Zhu Jian-Hua (朱建华), A. Viseu (冼保生). Chin. Phys. B, 2012, 21(8): 087402.
[10] Substrate-induced stress in silicon nanocrystal/SiO2 multilayer structure
Tao Ye-Liao(陶也了), Zuo Yu-Hua(左玉华), Zheng Jun(郑军), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), Wang Qi-Ming(王启明), and Xu Jun(徐骏) . Chin. Phys. B, 2012, 21(7): 077402.
[11] $\gamma$ radiation caused graphene defects and increased carrier density
Han Mai-Xing(韩买兴), Ji Zhuo-Yu(姬濯宇), Shang Li-Wei(商立伟), Chen Ying-Ping(陈映平), Wang Hong(王宏), Liu Xin(刘欣), Li Dong-Mei(李冬梅), and Liu Ming(刘明). Chin. Phys. B, 2011, 20(8): 086102.
[12] Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides
Liu Xiao-Dong(刘晓东), Meng Dong-Dong(孟冬冬), Hagihala Masato(萩原雅人), and Zheng Xu-Guang(郑旭光) . Chin. Phys. B, 2011, 20(8): 087801.
[13] First-principles calculations on the electronic and vibrational properties of $\beta$-V2O5
Zhou Bo(周波), Su Qing(苏庆), and He De-Yan(贺德衍). Chin. Phys. B, 2009, 18(11): 4988-4994.
No Suggested Reading articles found!