CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range |
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄)†, and Er-Jun Liang(梁二军)‡ |
Key Laboratory of Materials Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China |
|
|
Abstract We report a new type of near-zero thermal expansion material β-CuZnV2O7 in a large temperature range from 173 K to 673 K. It belongs to a monoclinic structure (C2/c space group) in the whole temperature range. No structural phase transition is observed at atmospheric pressure based on the x-ray diffraction and Raman experiment. The high-pressure Raman experiment demonstrates that two structural phase transitions exist at 0.94 GPa and 6.53 GPa, respectively. The mechanism of negative thermal expansion in β-CuZnV2O7 is interpreted by the variations of the angles between atoms intuitively and the phonon anharmonicity intrinsically resorting to the negative Grüneisen parameter.
|
Received: 18 September 2021
Revised: 19 October 2021
Accepted manuscript online: 27 October 2021
|
PACS:
|
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
61.66.-f
|
(Structure of specific crystalline solids)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
33.20.Fb
|
(Raman and Rayleigh spectra (including optical scattering) ?)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11874328, 12004339, 11574276, and 21905252), the China Postdoctoral Science Foundation (Grant Nos. 2018M640679, 2019T120629, and 2019M652558), and the Zhongyuan Academician Foundation (Grant No. ZYQR201810163). |
Corresponding Authors:
Xiao Ren, Er-Jun Liang
E-mail: rxphy@zzu.edu.cn;ejliang@zzu.edu.cn
|
Cite this article:
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军) Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range 2022 Chin. Phys. B 31 046502
|
[1] Liang E J, Sun Q, Yuan H L, Wang J Q, Zeng G J and Gao Q L 2021 Front. Phys. 16 53302 [2] Gao Q L, Wang J, Sanson A, Sun Q, Liang E J, Xing X R and Chen J 2020 J. Am. Chem. Soc. 142 6935 [3] Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J and Liang E J 2016 Chin. Phys. Lett. 33 046503 [4] Liu F S, Chen X P, Xie H X, Ao W Q and Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [5] Xu S, Hu Y M, Liang Y, Shi C F, Su Y L, Guo J, Gao Q L, Chao M J and Liang E J 2020 Chin. Phys. B 29 086501 [6] Hummel F A 2010 J. Am. Ceram. Soc. 34 235 [7] Poowancum A, Matsumaru K and Ishizaki K 2011 J. Am. Ceram. Soc. 94 1354 [8] Duan N, Kameswari U and Sleight A W 2013 J. Am. Chem. Soc. 121 10432 [9] Marinkovic B A, Jardim P M, Avillez R R Rizzo F 2005 Solid State Sci. 7 1377 [10] Evans J S O, Mary T A, Vogt T, Subramanian M A and Sleight A W 1996 Chem. Mater. 8 2809 [11] Khosrovani N, Sleight A W and Vogt T 1997 J. Solid State Chem. 132 355 [12] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90 [13] Evans J S O, Hanson J C and Sleight A W 1998 Acta Crystall. 54 705 [14] Mittal R, Chaplot S L 2008 Phys. Rev. B 78 174303 [15] Turquat C, Muller C, Nigrelli E, Soubeyroux J L and Nihoul G 2000 Eur. Phys. J. AP 10 15 [16] Hisashige T, Yamaguchi T, Tsuji T and Yamamura Y 2006 J. Ceram. Soc. Jpn. 114 607 [17] Zhang N, Li L, Wu M Y, Li Y X, Feng D S, Liu C Y, Mao Y C, Guo J, Chao M J and Liang E J 2016 J. Eur. Ceram. Soc. 36 2761 [18] Wang H, Yang M J, Guo J, Gao Q L, Jiao Y J, Tang X B, Chao M J and Liang E J 2019 Solid State Ionics 343 115086 [19] Krasnenko T, Medvedeva N and Bamburov V 2010 Adv. Sci. Technol. 63 358 [20] Krasnenko T I, Zolotukhina L V and Andrianova L V 2000 Inorg. Mater. 36 1032 [21] Rotermel M V and Krasnenko T I 2017 Crystall. Rep. 62 703 [22] Shi N K, Sanson A, Gao Q L, Sun Q, Ren Y, Huang Z H, Souza D O, Xing X R and Chen J 2020 J. Am. Chem. Soc. 142 3088 [23] Yuan H L, Yuan B H, Fang L and Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese) [24] Wei W, Gao Q, Guo J, Chao M J, He L H, Chen J and Liang E J 2020 Appl. Phys. Lett. 116 181902 [25] Wang H, Yang M J, Chao M, Guo J, Tang X B, Jiao Y J and Liang E J 2019 Ceram. Int. 45 9814 [26] Katayama N, Otsuka K, Mitamura M, Yokoyama Y, Okamoto Y and Takenaka K 2018 Appl. Phys. Lett. 113 181902 [27] Wang J P, Chen Q D, Li S L, Ji Y J, Mu W Y, Feng W W, Zeng G J, Liu Y W and Liang E J 2018 Chin. Phys. B 27 066501 [28] He X K, Qi H, Xu Q, Liu X S, Xu L and Yuan B H 2016 Chin. Phys. B 28 056501 [29] Rotermel M V, Krasnenko T I, Petrova S A and Titova S G 2018 Chim. Technol. Acta 5 86 [30] Shi N K, Sanson A, Venier A, Fan L L, Sun C J, Xing X R and Chen J 2020 Chem. Commun. 56 10666 [31] Waal D and Hutter C 1994 Mater. Res. Bull. 29 843 [32] Schindler M and Hawthorne F C 1999 J. Solid State Chem. 146 271 [33] Gao Y X, Wang C Y, Gao Q L, Guo J, Chao M J, Jia Y and Liang E J 2020 Inorg. Chem. 59 18427 [34] Xu J L, Hu L, Song Y Z, Han F, Qiao Y Q, Deng J X, Chen J and Xing X R 2017 J. Am. Ceram. Soc. 100 5385 [35] Gao Q L, Shi X W, Venier A, Carnera A, Huang Q Z, Wu H, Chen J, Sanson A and Liang E J 2020 Inorg. Chem. 59 14852 [36] Zeng G J, Yuan H L, Guo J, Sun Q, Gao Q L, Chao M J, Ren X and Liang E J 2020 Phys. Chem. Chem. Phys. 22 12605 [37] Yuan H L, Wang C Y, Gao Q L, Ge X H, Sun H, Lapidus S H, Guo J, Chao M J, Jia Yu and Laing E J 2020 Inorg. Chem. 59 4090 [38] Zhu Y W, Chen R, Chen L, Chao M J, Guo J, Gao Q L and Laing E J 2021 Solid State Sci. 112 106515 [39] Lucazeau G 2003 J. Raman Spectrosc. 34 478 [40] Ding P, Liang E J, Jia Y and Du Z Y 2008 J. Phys. Condens. Matter. 20 275224 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|