|
|
Beating standard quantum limit via two-axis magnetic susceptibility measurement |
Zheng-An Wang(王正安)1,2,†, Yi Peng(彭益)1,3,†, Dapeng Yu(俞大鹏)3,4,5, and Heng Fan(范桁)1,2,6,7,‡ |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Shenzhen Insititute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 4 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 5 Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 6 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 7 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We report a metrology scheme which measures the magnetic susceptibility of an atomic spin ensemble along the $x$ and $z$ directions and produces parameter estimation with precision beating the standard quantum limit. The atomic ensemble is initialized via one-axis spin squeezing with optimized squeezing time and parameter $\phi$ (to be estimated) assumed as uniformly distributed between 0 and $2\pi$ while fixed in each estimation. One estimation of $\phi$ can be produced with every two magnetic susceptibility data measured along the two axes respectively, which has an imprecision scaling $({1.43\pm0.02})/N^{0.687\pm0.003}$ with respect to the number $N$ of the atomic spins. The measurement scheme is easy to implement and is robust against the measurement fluctuation caused by environment noise and measurement defects.
|
Received: 28 October 2021
Revised: 05 December 2021
Accepted manuscript online: 11 December 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
06.20.-f
|
(Metrology)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. T2121001, 11934018, and U1801661), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2018B030326001), Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. KYTDPT20181011104202253 and 2016ZT06D348). |
Corresponding Authors:
Heng Fan
E-mail: hfan@iphy.ac.cn
|
Cite this article:
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁) Beating standard quantum limit via two-axis magnetic susceptibility measurement 2022 Chin. Phys. B 31 040309
|
[1] Giovannetti V, Lloyd S and Maccone L 2001 Nature 412 417 [2] Jozsa R, Abrams D S, Dowling J P and Williams C P 2000 Phys. Rev. Lett. 85 2010 [3] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A and Bowen W P 2013 Nat. Photonics 7 229 [4] Schnabel R, Mavalvala N, McClelland D E and Lam P K 2010 Nat. Commun. 1 121 [5] The LIGO Scientific Collaboration 2013 Nat. Photonics 7 613 [6] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [7] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401 [8] Chen G, Yin P, Zhang W H, Li G C, Li C F and Guo G C 2021 Entropy 23 354 [9] Zhao X, Yang Y and Chiribella G 2020 Phys. Rev. Lett. 124 190503 [10] Zou Y Q, Wu L N, Liu Q, Luo X Y, Guo S F, Cao J H, Tey M K and You L 2018 Proc. Natl. Acad. Sci. USA 115 6381 [11] Hudelist F, Kong J, Liu C, Jing J, Ou Z and Zhang W 2014 Nat. Commun. 5 3049 [12] Riedel M F, Böhi P, Li Y, Hänsch T W, Sinatra A and Treutlein P 2010 Nature 464 1170 [13] Gross C, Zibold T, Nicklas E, Esteve J and Oberthaler M K 2010 Nature 464 1165 [14] Lücke B, Scherer M, Kruse J, Pezzè L, Deuretzbacher F, Hyllus P, Topic O, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A and Klempt C 2011 Science 334 773 [15] Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezzè L, Smerzi A and Oberthaler M K 2014 Science 345 424 [16] Berry D W and Wiseman H M 2000 Phys. Rev. Lett. 85 5098 [17] Hentschel A and Sanders B C 2010 Phys. Rev. Lett. 104 063603 [18] Hentschel A and Sanders B C 2011 Phys. Rev. Lett. 107 233601 [19] Lovett N B, Crosnier C, Perarnau-Llobet M and Sanders B C 2013 Phys. Rev. Lett. 110 220501 [20] Peng Y and Fan H 2020 Phys. Rev. A 101 022107 [21] Zhang H, McConnell R, Ćuk S, Lin Q, Schleier-Smith M H, Leroux I D and Vuletić V 2012 Phys. Rev. Lett. 109 133603 [22] Hume D B, Stroescu I, Joos M, Muessel W, Strobel H and Oberthaler M K 2013 Phys. Rev. Lett. 111 253001 [23] Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R J, Kheruntsyan K V and Oberthaler M K 2016 Phys. Rev. Lett. 117 013001 [24] Hosten O, Krishnakumar R, Engelsen N J and Kasevich M A 2016 Science 352 1552 [25] Davis E, Bentsen G and Schleier-Smith M 2016 Phys. Rev. Lett. 116 053601 [26] Nolan S P, Szigeti S S and Haine S A 2017 Phys. Rev. Lett. 119 193601 [27] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138 [28] Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401 [29] Belliardo F and Giovannetti V 2020 Phys. Rev. A 102 042613 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|