Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040309    DOI: 10.1088/1674-1056/ac4229
GENERAL Prev   Next  

Beating standard quantum limit via two-axis magnetic susceptibility measurement

Zheng-An Wang(王正安)1,2,†, Yi Peng(彭益)1,3,†, Dapeng Yu(俞大鹏)3,4,5, and Heng Fan(范桁)1,2,6,7,‡
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Shenzhen Insititute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
4 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
5 Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
6 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
7 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We report a metrology scheme which measures the magnetic susceptibility of an atomic spin ensemble along the $x$ and $z$ directions and produces parameter estimation with precision beating the standard quantum limit. The atomic ensemble is initialized via one-axis spin squeezing with optimized squeezing time and parameter $\phi$ (to be estimated) assumed as uniformly distributed between 0 and $2\pi$ while fixed in each estimation. One estimation of $\phi$ can be produced with every two magnetic susceptibility data measured along the two axes respectively, which has an imprecision scaling $({1.43\pm0.02})/N^{0.687\pm0.003}$ with respect to the number $N$ of the atomic spins. The measurement scheme is easy to implement and is robust against the measurement fluctuation caused by environment noise and measurement defects.
Keywords:  quantum metrology      spin-squeezing      standard quantum limit      fluctuation  
Received:  28 October 2021      Revised:  05 December 2021      Accepted manuscript online:  11 December 2021
PACS:  03.67.-a (Quantum information)  
  06.20.-f (Metrology)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. T2121001, 11934018, and U1801661), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2018B030326001), Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. KYTDPT20181011104202253 and 2016ZT06D348).
Corresponding Authors:  Heng Fan     E-mail:  hfan@iphy.ac.cn

Cite this article: 

Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁) Beating standard quantum limit via two-axis magnetic susceptibility measurement 2022 Chin. Phys. B 31 040309

[1] Giovannetti V, Lloyd S and Maccone L 2001 Nature 412 417
[2] Jozsa R, Abrams D S, Dowling J P and Williams C P 2000 Phys. Rev. Lett. 85 2010
[3] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A and Bowen W P 2013 Nat. Photonics 7 229
[4] Schnabel R, Mavalvala N, McClelland D E and Lam P K 2010 Nat. Commun. 1 121
[5] The LIGO Scientific Collaboration 2013 Nat. Photonics 7 613
[6] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[7] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[8] Chen G, Yin P, Zhang W H, Li G C, Li C F and Guo G C 2021 Entropy 23 354
[9] Zhao X, Yang Y and Chiribella G 2020 Phys. Rev. Lett. 124 190503
[10] Zou Y Q, Wu L N, Liu Q, Luo X Y, Guo S F, Cao J H, Tey M K and You L 2018 Proc. Natl. Acad. Sci. USA 115 6381
[11] Hudelist F, Kong J, Liu C, Jing J, Ou Z and Zhang W 2014 Nat. Commun. 5 3049
[12] Riedel M F, Böhi P, Li Y, Hänsch T W, Sinatra A and Treutlein P 2010 Nature 464 1170
[13] Gross C, Zibold T, Nicklas E, Esteve J and Oberthaler M K 2010 Nature 464 1165
[14] Lücke B, Scherer M, Kruse J, Pezzè L, Deuretzbacher F, Hyllus P, Topic O, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A and Klempt C 2011 Science 334 773
[15] Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezzè L, Smerzi A and Oberthaler M K 2014 Science 345 424
[16] Berry D W and Wiseman H M 2000 Phys. Rev. Lett. 85 5098
[17] Hentschel A and Sanders B C 2010 Phys. Rev. Lett. 104 063603
[18] Hentschel A and Sanders B C 2011 Phys. Rev. Lett. 107 233601
[19] Lovett N B, Crosnier C, Perarnau-Llobet M and Sanders B C 2013 Phys. Rev. Lett. 110 220501
[20] Peng Y and Fan H 2020 Phys. Rev. A 101 022107
[21] Zhang H, McConnell R, Ćuk S, Lin Q, Schleier-Smith M H, Leroux I D and Vuletić V 2012 Phys. Rev. Lett. 109 133603
[22] Hume D B, Stroescu I, Joos M, Muessel W, Strobel H and Oberthaler M K 2013 Phys. Rev. Lett. 111 253001
[23] Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R J, Kheruntsyan K V and Oberthaler M K 2016 Phys. Rev. Lett. 117 013001
[24] Hosten O, Krishnakumar R, Engelsen N J and Kasevich M A 2016 Science 352 1552
[25] Davis E, Bentsen G and Schleier-Smith M 2016 Phys. Rev. Lett. 116 053601
[26] Nolan S P, Szigeti S S and Haine S A 2017 Phys. Rev. Lett. 119 193601
[27] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[28] Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
[29] Belliardo F and Giovannetti V 2020 Phys. Rev. A 102 042613
[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[3] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡). Chin. Phys. B, 2022, 31(11): 117104.
[6] Characteristics of temperature fluctuation in two-dimensional turbulent Rayleigh-Bénard convection
Ming-Wei Fang(方明卫), Jian-Chao He(何建超), Zhan-Chao Hu(胡战超), and Yun Bao(包芸). Chin. Phys. B, 2022, 31(1): 014701.
[7] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[8] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[9] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[10] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[11] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[12] Symmetry properties of fluctuations in an actively driven rotor
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋). Chin. Phys. B, 2020, 29(6): 060502.
[13] M2-factor of high-power laser beams through a multi-apertured ABCD optical system
Xiangmei Zeng(曾祥梅), Meizhi Zhang(张美志), Dongmei Cao(曹冬梅), Dingyu Sun(孙鼎宇), Hua Zhou(周花). Chin. Phys. B, 2020, 29(6): 064206.
[14] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[15] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
No Suggested Reading articles found!