|
|
Electrical and thermoelectric study of two-dimensional crystal of NbSe2 |
Xin-Qi Li(李新祺)1, Zhi-Lin Li(李治林)1, Jia-Ji Zhao(赵嘉佶)1, Xiao-Song Wu(吴孝松)1,2 |
1 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Beijing Key Laboratory of Quantum Devices, Peking University, Beijing 100871, China;
2 Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract We report experimental investigation of the resistivity and Nernst effect in two-dimensional (2D) NbSe2 crystals. A strongly enhanced Nernst effect, 100 times larger than that in bulk NbSe2, caused by moving vortices is observed in thin film. It is found that in the low temperature, high magnetic field regime, pinning effects show little dependence on the thickness and resistivity of the superconductor films. Strong Nernst signals persist above the superconducting transition, suggesting that the Nernst effect is a sensitive probe to superconducting fluctuations. A magnetic field induced superconductor-insulator transition (SIT) is evident, which is surprising in that such a SIT usually takes place in disordered dirty superconductors, while our samples are highly crystalline and close to the clean limit. Hence, our results expand the scope of SIT into 2D crystal clean superconductors.
|
Received: 15 March 2020
Revised: 07 May 2020
Accepted manuscript online:
|
PACS:
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
74.25.fg
|
(Thermoelectric effects)
|
|
74.40.Kb
|
(Quantum critical phenomena)
|
|
74.40.-n
|
(Fluctuation phenomena)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2016YFA0300600) and the National Natural Science Foundation of China (Grant Nos. 11574005 and 11774009). |
Corresponding Authors:
Xiao-Song Wu
E-mail: xswu@pku.edu.cn
|
Cite this article:
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松) Electrical and thermoelectric study of two-dimensional crystal of NbSe2 2020 Chin. Phys. B 29 087402
|
[1] |
Qin S Y, Kim J, Niu Q and Shih C K 2009 Science 324 1314
|
[2] |
Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
|
[3] |
Liao M H, Zang Y Y, Guan Z Y, Li H W, Gong Y, Zhu K J, Hu X P, Zhang D, Xu Y, Wang Y Y, He K, Ma X C, Zhang S C and Xue Q K 2018 Nat. Phys. 14 344
|
[4] |
Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2015 Nat. Phys. 12 139
|
[5] |
Gan Y, Cho C W, Li A, Lyu J, Du X, Wen J S and Zhang L Y 2019 Chin. Phys. B 28 117401
|
[6] |
Tsen A W, Hunt B, Kim Y D, Yuan Z J, Jia S, Cava R J, Hone J, Kim P, Dean C R and Pasupathy A N 2016 Nat. Phys. 12 208
|
[7] |
Shalnikov A 1938 Nature 142 74
|
[8] |
Marković N, Christiansen C and Goldman A M 1998 Phys. Rev. Lett. 81 5217
|
[9] |
Pourret A, Aubin H, Lesueur J, Marrache-Kikuchi C A, Bergé L, Dumoulin L and Behnia K 2006 Nat. Phys. 2 683
|
[10] |
Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353
|
[11] |
Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J T, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y and Iwasa Y 2016 Nat. Phys. 12 144
|
[12] |
Saito Y, Kasahara Y, Ye J T, Iwasa Y and Nojima T 2015 Science 350 409
|
[13] |
Xing Y, Zhao K, Shan P, Zheng F P, Zhang Y W, Fu H L, Liu Y, Tian M L, Xi C Y, Liu H W, Feng J, Lin X, Ji S H, Chen X, Xue Q K and Wang J 2017 Nano Lett. 17 6802
|
[14] |
Lu J M, Zheliuk O, Chen Q H, Leermakers I, Hussey N E, Zeitler U and Ye J T 2018 Proc. Natl. Acad. Sci. USA 115 3551
|
[15] |
Xing Y, Zhang H M, Fu H L, Liu H W, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J and Xie X C 2015 Science 350 542
|
[16] |
Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang J and Li Y R 2019 Science 366 1505
|
[17] |
Phillips P W 2016 Nat. Phys. 12 206
|
[18] |
Brink L, Gunn M, José J V, Kosterlitz M and Phua K K 2018 Topological Phase Transitions and New Developments (Sigapore:World Scientific) p. 114
|
[19] |
Sajadi E, Palomaki T, Fei Z Y, Zhao W J, Bement P, Olsen C, Luescher S, Xu X D, Folk J A and Cobden D H 2018 Science 362 922
|
[20] |
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
|
[21] |
Yu Y J, Ma L G, Cai P, Zhong R D, Ye C, Shen J, Gu G D, Chen X H and Zhang Y B 2019 Nature 575 156
|
[22] |
Ding C, Liu C, Zhang Q H, Gong G M, Wang H, Liu X Z, Meng F Q, Yang H H, Wu R, Song C L, Li W, He K, Ma X C, Gu L, Wang L L and Xue Q K 2018 Acta. Phys. Sin 67 207415(in Chinese)
|
[23] |
Costanzo D, Zhang H J, Reddy B A, Berger H and Morpurgo A F 2018 Nat. Nanotechnol. 13 483
|
[24] |
Huebener R P and Seher A 1969 Phys. Rev. 181 701
|
[25] |
Huebener R P and Seher A 1969 Phys. Rev. 181 710
|
[26] |
Rowe V A and Huebener R P 1969 Phys. Rev. 185 666
|
[27] |
Xu Z A, Ong N P, Wang Y, Kakeshita T and Uchida S 2000 Nature 406 486
|
[28] |
Pourret A, Aubin H, Lesueur J, Marrache-Kikuchi C A, Bergé L, Dumoulin L and Behnia K 2007 Phys. Rev. B 76 214504
|
[29] |
Lerer S, Bachar N, Deutscher G and Dagan Y 2014 Phys. Rev. B 90 214521
|
[30] |
Bel R, Behnia K and Berger H 2003 Phys. Rev. Lett. 91 066602
|
[31] |
Jia Z Z, Li C Z, Li X Q, Shi J R, Liao Z M, Yu, D P and Wu X S 2016 Nat. Commun. 7 13013
|
[32] |
Aubin M, Ghamlouch H and Fournier P 1993 Rev. Sci. Instrum. 64 2938
|
[33] |
Staley N E, Wu J, Eklund P, Liu Y, Li L J and Xu Z 2009 Phys. Rev. B 80 184505
|
[34] |
Wang Y Y, Li L and Ong N P 2006 Phys. Rev. B 73 024510
|
[35] |
Wang Y Y, Ong N P, Xu Z A, Kakeshita T, Uchida S, Bonn D A, Liang R and Hardy W N 2002 Phys. Rev. Lett. 88 257003
|
[36] |
Skocpol W J and Tinkham M 1975 Rep. Prog. Phys. 38 1049
|
[37] |
Pourret A, Spathis P, Aubin H and Behnia K 2009 New J. Phys. 11 055071
|
[38] |
Tinkham M 2004 Introduction to superconductivity, 2nd Edn. (Courier Corporation) pp. 167-170
|
[39] |
Foner S and Schwartz B B 1981 Superconductor material science:metallurgy, fabrication, and applications, 1st Edn. (New York:Plenum Press) pp. 735-754
|
[40] |
Solomon P R and Otter Jr F A 1967 Phys. Rev. 164 608
|
[41] |
Capan C, Behnia K, Hinderer J, Jansen A G M, Lang W, Marcenat C, Marin C and Flouquet J 2002 Phys. Rev. Lett. 88 056601
|
[42] |
Fisher M P A 1990 Phys. Rev. Lett. 65 923
|
[43] |
Yazdani A and Kapitulnik A 1995 Phys. Rev. Lett. 74 3037
|
[44] |
Sørensen E S, Wallin M, Girvin S M and Young A P 1992 Phys. Rev. Lett. 69 828
|
[45] |
Cha M C and Girvin S M 1994 Phys. Rev. B 49 9794
|
[46] |
Iyer S, Pekker D and Refael G 2012 Phys. Rev. B 85 094202
|
[47] |
Roy A, Shimshoni E and Frydman A 2018 Phys. Rev. Lett. 121 047003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|