Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048702    DOI: 10.1088/1674-1056/ac3caa
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution

Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军)
Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, China
Abstract  A-form DNA is one of the biologically active double helical structure. The study of A-DNA structure has an extensive application for developing the field of DNA packaging in biotechnology. In aqueous solution, the A-DNA structure will have a free transformation, the A-DNA structure will be translated into B-form structure with the evolution of time, and eventually stabilized in the B-DNA structure. To explore the stability function of the bivalent metal ions on the A-DNA structure, a series of molecular dynamics simulations have been performed on the A-DNA of sequence (CCCGGCCGGG). The results show that bivalent metal ions (Mg2+, Zn2+, Ca2+) generate a great effect on the structural stability of A-DNA in the environment of high concentration. As the interaction between metal ions and electronegative DNA chains, the stability of A-DNA in solution is gradually improved with the increasing solution concentration of ions. In metal salt solution with high concentration, metal ions can be easily distributed in the solvation shells around the phosphate groups and further lead to the formation of shorter and more compact DNA structure. Also, under the condition of the same concentration and valency of the metal ions, the stability of A-DNA structure is different. The calculations indicate that the structure of A-DNA in CaCl2 solution is less stable than in MgCl2 and ZnCl2 solution.
Keywords:  transition of DNA structure      bivalent metal ions      molecular dynamics simulations      effect of concentration  
Received:  04 August 2021      Revised:  06 October 2021      Accepted manuscript online:  24 November 2021
PACS:  87.14.gk (DNA)  
  87.15.ap (Molecular dynamics simulation)  
  87.15.-v (Biomolecules: structure and physical properties)  
  87.15.hp (Conformational changes)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11564015), the Foundation of Educational Committee of Jiangxi Province, China (Grant No. GJJ211112), and the Fund for Distinguished Young Scholars of Jiangxi Science & Technology Normal University (Grant No. 2015QN-BJRC002).
Corresponding Authors:  Rongri Tan, Wenjun Zong     E-mail:  rogertanr@hotmail.com;13807065116@163.com

Cite this article: 

Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军) Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution 2022 Chin. Phys. B 31 048702

[1] Thanbichler M, Wang S C and Shapiro L 2005 J. Cell. Biochem. 96 506
[2] Patel D J, Pardi A and Itakura K 1982 Science 216 581
[3] Nugent C I and Lundblad V 1998 Genes Dev. 12 1073
[4] Watson J D and Crick F H 1953 Nature 171 737
[5] Wilkins M H, Stokes A R and Wilson H R 1953 Nature 171 738
[6] Lavery R, Moakher M, Maddocks J H, Petkeviciute D and Zakrzewska K 2009 Nucl. Acids. Res. 37 5917
[7] Kilpatrick J E, Pitzer K S and Spitzer R 1947 J. Am. Chem. Soc. 69 2483
[8] Altona C and Sundaralingam M 1972 J. Am. Chem. Soc. 94 8205
[9] Dickerson R E, Drew H R, Conner B N, Wing R M, Fratini A V and Kopka M L 1982 Science 216 475
[10] Ghosh A and Bansal M 2003 Acta Crystall. D:Biol. Crystallogr. 59 620
[11] Wu H M, Dattagupta N and Crothers D M 1981 Proc. Natl. Acad Sci. USA 78 6808
[12] Daley J 2019 Nature 576 S12
[13] Gibson D 2002 Pharmacogen. J. 2 275
[14] Oram M, Sabanayagam C and Black L W 2008 J. Mol. Biol. 381 61
[15] Seeman N C and Sleiman H F 2017 Nat. Rev. Mater. 3 1
[16] Wolk S, Thurmes W N, Ross W S, Hardin C C and Tinoco I Jr 1989 Biochemistry 28 2452
[17] Omichinski J G, Clore G, Schaad O, Felsenfeld G, Trainor C, Appella E, Stahl S and Gronenborn A 1993 Science 261 438
[18] Zimmerman S B and Pheiffer B H 1979 J. Mol. Biol. 135 1023
[19] Cheatham III T and Kollma P 1996 J. Mol. Biol. 259 434
[20] Waters J T, Lu X J, Galindo-Murillo R, Gumbart J C, Kim H D, Cheatham T E and Harvey S C 2016 J. Phys. Chem. B 120 8449
[21] Lai C T and Schatz G C 2018 J. Phys. Chem. B 122 7990
[22] Pasi M, Maddocks J H and Lavery R 2015 Nucl. Acids Res. 43 2412
[23] Yoo J and Aksimentiev A 2012 J. Phys. Chem. B 116 12946
[24] Alder B J and Wainwright T E 1959 J. Chem. Phys. 31 459
[25] Hays F A, Teegarden A, Jones Z J, Harms M, Raup D, Watson J, Cavaliere E and Ho P S 2005 Proc. Natl. Acad. Sci. USA 102 7157
[26] Li W, Nordenskiöld L and Mu Y 2011 J. Phys. Chem. B 115 14713
[27] Mukherjee S and Bhattacharyya D 2013 J. Biomol. Struct. Dyn. 31 896
[28] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 Softwarex 1 19
[29] Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W and Kollman P A 1995 J. Am. Chem. Soc. 117 5179
[30] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[31] Berendsen H, Grigera J and Straatsma T 1987 J. Phys. Chem. 91 6269
[32] Liu J H, Zhang X, Bao L, Zhang X H and Tan Z J 2019 Biophys. J. 117 74
[33] Hyndman R J and Koehler A B 2006 Int. J. Forecast. 22 679
[34] Barciszewski J, Jurczak J, Porowski S, Specht T and Erdmann V A 1999 Eur. J. Biochem. 260 293
[35] Bao L, Zhang X, Shi Y Z, Wu Y Y and Tan Z J 2017 Biophys. J. 112 1094
[36] Zgarbova M, Jurecka P, Sponer J and Michal O 2018 J. Chem. Theor. Comput. 14 1319
[37] Drew H R, Wing R M, Takano T, Broka C, Tanaka S, Itakura K and Dickerson R E 1981 Proc. Natl. Acad. Sci. USA 78 2179
[38] Heinemann U, Alings C and Bansal M 1992 EMBO J. 11 1931
[39] Richmond T J and Davey C A 2003 Nature 423 145
[40] Fu H, Zhang C, Qiang X W, Yang Y J, Dai L, Tan Z J and Zhang X H 2020 Phys. Rev. Lett. 124 058101
[41] Pan F, Roland C and Sagui C 2020 Nucl. Acids Res. 42 13981
[42] Drozdetski A V, Tolokh I S, Pollack Lois, Baker N and Onufriev V 1986 Phys. Rev. Lett. 117 028101
[43] Tolokh I S, Pabit S A, Katz A M, Chen Y, Drozdetski A, Baker N, Pollack L and Onufriev A V 2014 Nucl. Acids Res. 14 2737
[44] Wu Y Y, Zhang Z L, Zhang J S, Zhu X L and Tan Z J 2015 Nucl. Acids Res. 43 6156
[45] Long M P, Alland S, Martin M E and Isborn C M 2011 J. Phys. Chem. B 115 14713
[46] Nishimura Y, Torigoe C and Tsuboi M 2020 Phys. Chem. Chem. Phys. 22 5584
[47] Eichhorn G L and Clark P 1965 Proc. Natl. Acad. Sci. USA 23 050502
[48] Pasi M, Maddocks J H and Lavery R 2015 Nucl. Acids Res. 43 2421
[49] Feig M and Pettitt B M 1999 Biophys. J. 77 1769
[50] Tan Z J and Chen S J 2006 Biophys. J. 90 1175
[51] Madhumalar A and Bansal M 2003 Biophys. J. 85 1805
[52] Soliva R, Luque F J, Alhambra C and Orozco M 1999 J. Biomol. Struct. Dyn. 17 89
[53] Bujold K E, Lacroix A and Sleiman H F 2018 Chem 4 495
[1] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[2] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[3] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[4] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[5] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[6] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[7] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[8] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[9] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[10] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[11] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[12] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
[13] Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer
Bin Xu(徐斌), Wen-Qiang Lin(林文强), Xiao-Gang Wang(汪小刚), Song-wei Zeng(曾松伟), Guo-Quan Zhou(周国泉), Jun-Lang Chen(陈均朗). Chin. Phys. B, 2017, 26(3): 033103.
[14] Nano watermill driven by revolving charge
Zhou Xiao-Yan (周晓艳), Kou Jian-Long (寇建龙), Nie Xue-Chuan (聂雪川), Wu Feng-Min (吴锋民), Liu Yang (刘扬), Lu Hang-Jun (陆杭军). Chin. Phys. B, 2015, 24(7): 074702.
[15] Crystallization of polymer chains induced by graphene:Molecular dynamics study
Yang Jun-Sheng (杨俊升), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Li Qiang (李强), Wang Li-Zhi (王立志), Wang Fan-Hou (王藩侯). Chin. Phys. B, 2013, 22(9): 098101.
No Suggested Reading articles found!