CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal |
Jie Wang(王杰)1, Guang-Zhe Ma(马广哲)1, Lu Cao(曹露)1, Min Gao(高敏)2, and Dong Shi(石东)1,† |
1 School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; 2 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract Doublet luminescence from hybrid metal trihalide perovskite semiconductors is observed along with materials processing when high-quality single crystals are obtainable. Yet, the underlying physical mechanism remains poorly understood. Here, we report controllable solution-processed crystallization that affords high-quality CH3NH3PbBr3 single crystals with atomically flat pristine surfaces. Front-face photoluminescence (PL) shows doublet luminescence components with variable relative intensities depending on the crystal surface conditions. We further find that the low-energy PL component with asymmetric spectral line-shape becomes predominant when the atomically flat crystal surfaces are passivated in the ion-abundant saturated solutions, while poor-quality single crystal with visually rough surface only gives the high-energy PL with symmetric line-shape. The asymmetric spectral line-shape of the low-energy PL matches perfectly with the simulated bandedge emission. Therefore, the low-energy PL component is attributable to the intrinsic bandedge emission from the crystal bulk while the high-energy one to surface-specific emission. Elliott fitting to the absorption data and multi-exponential fitting to the time-resolved photoluminescence traces jointly indicate the coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystals, thereby catching the physical merit that leads to the occurrence of doublet luminescence.
|
Received: 21 June 2021
Revised: 30 August 2021
Accepted manuscript online: 24 September 2021
|
PACS:
|
71.10.Li
|
(Excited states and pairing interactions in model systems)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
71.15.Qe
|
(Excited states: methodology)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51872038). |
Corresponding Authors:
Dong Shi
E-mail: dshi@uestc.edu.cn
|
Cite this article:
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东) Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal 2022 Chin. Phys. B 31 047104
|
[1] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photonics 8 506 [2] Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W and Hagfeldt A 2017 Science 358 739 [3] Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulovic V, Shin S S, Bawendi M G and Seo J 2021 Nature 590 587 [4] Era M, Morimoto S, Tsutsui T and Saito S 1994 Appl. Phys. Lett. 65 676 [5] Hattori T, Taira T, Era M, Tsutsui T and Saito S 1996 Chem. Phys. Lett. 254 103 [6] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [7] Im J H, Lee C R, Lee J W, Park S W and Park N G 2011 Nanoscale 3 4088 [8] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M and Park N G 2012 Sci. Rep. 2 591 [9] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643 [10] Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H and Han H 2018 Science 361 eaat8235 [11] Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T and Friend R H 2014 J. Phys. Chem. Lett. 5 1421 [12] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S and Sum T C 2014 Nat. Mater. 13 476 [13] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J and Huang W 2018 Nature 562 249 [14] Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q and Wei Z 2018 Nature 562 245 [15] Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G and Yang Y 2014 Nat. Commun. 5 5404 [16] Lin Q, Armin A, Lyons D M, Burn P L and Meredith P 2015 Adv. Mater. 27 2060 [17] Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L and Huang J 2016 Nat. Photonics 10 333 [18] Shrestha S, Fischer R, Matt G J, Feldner P, Michel T, Osvet A, Levchuk I, Merle B, Golkar S, Chen H, Tedde S F, Schmidt O, Hock R, Rührig M, Göken M, Heiss W, Anton G and Brabec C J 2017 Nat. Photonics 11 436 [19] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522 [20] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J and Huang W 2016 Nat. Photonics 10 699 [21] Tan H, Jain A, Voznyy O, Lan X, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S and Sargent E H 2017 Science 355 722 [22] Wang Y, Li X, Nalla V, Zeng H and Sun H 2017 Adv. Funct. Mater. 27 1605088 [23] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519 [24] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L and Huang J 2015 Science 347 967 [25] Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S and Haque S A 2017 Nat. Commun. 8 15218 [26] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photonics 13 460 [27] Volk S, Yazdani N, Yarema O, Yarema M and Wood V 2020 ACS Appl. Electron. Mater. 2 398 [28] Chen C X, Wang J, Gao M and Shi D 2020 Cryst. Growth Des. 21 45 [29] Fang Y, Dong Q, Shao Y, Yuan Y and Huang J 2015 Nat. Photonics 9 679 [30] Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, Yu F, Zhang X, Zhao C and Liu S F 2015 Adv. Mater. 27 5176 [31] Comin R, Walters G, Thibau E S, Voznyy O, Lu Z H and Sargent E H 2015 J. Mater. Chem. C 3 8839 [32] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H and Stranks S D 2018 Nature 555 497 [33] She X J, Chen C, Divitini G, Zhao B, Li Y, Wang J, Orri J F, Cui L, Xu W, Peng J, Wang S, Sadhanala A and Sirringhaus H 2020 Nat. Electron. 3 694 [34] Yamada T, Yamada Y, Nakaike Y, Wakamiya A and Kanemitsu Y 2017 Phys. Rev. Appl. 7 014001 [35] van Roosbroeck W and Shockley W 1954 Phys. Rev. 94 1558 [36] Yamada T, Aharen T and Kanemitsu Y 2018 Phys. Rev. Lett. 120 057404 [37] Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A and Bongiovanni G 2014 Nat. Commun. 5 5049 [38] Davies C L, Filip M R, Patel J B, Crothers T W, Verdi C, Wright A D, Milot R L, Giustino F, Johnston M B and Herz L M 2018 Nat. Commun. 9 293 [39] D'Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J and Petrozza A 2014 Nat. Commun. 5 3586 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|