Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040703    DOI: 10.1088/1674-1056/ac3a65
GENERAL Prev   Next  

Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation

Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平)
Key Laboratory of Micro-Nano-Electronics and Software Technology of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
Abstract  We propose a cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation. Formulas for calculating the phase distributions of cylindrical conformal transmitted metasurface is presented. A prototype of the proposed conformal transmitted metasurface is designed, fabricated and measured. Measured results shows that the proposed conformal transmitted metasurface can effectively generate vortex waves, which verifies the effectiveness of our method. The proposed method may pave the way of vortex wave generation with cylindrical conformal devices.
Keywords:  orbital angular momentum      cylindrical conformal transmitted metasurface  
Received:  02 September 2021      Revised:  26 October 2021      Accepted manuscript online:  17 November 2021
PACS:  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  41.20.-q (Applied classical electromagnetism)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 61961006) and the Science Technology Foundation of Guizhou Province, China (Grant No. QKHJC[2020]1Y257).
Corresponding Authors:  Shi-Xing Yu, Na Kou     E-mail:  sxyu1@gzu.edu.cn;nkou@gzu.edu.cn

Cite this article: 

Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平) Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation 2022 Chin. Phys. B 31 040703

[1] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161
[2] Yan Y, Xie G D, Lavery M P J, Huang H, Ahmed N, Bao C J, Ren Y X, Cao Y W, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J and Willner A E 2014 Nat. Commun. 5 4876
[3] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488
[4] Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A and Romanato F 2012 New J. Phys. 14 033001
[5] Xu C, Zheng S L, Zhang W T, Chen Y L, Chi H, Jin X F and Zhang X M 2016 IEEE Microw. Wirel. Compon. Lett. 26 738
[6] Liu K, Cheng Y Q, Gao Y, Li X, Qin Y L and Wang H Q 2017 Appl. Phys. Lett. 110 164102
[7] Lin M T, Gao Y, Liu P G and Liu J B 2016 Electron. Lett. 52 1168
[8] Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H and Khamitova R 2007 Phys. Rev. Lett. 99 087701
[9] Chen Y L, Zheng S L, Li Y, Hui X N, Jin X F, Chi H and Zhang X M 2015 IEEE Antennas Wirel. Propag. Lett. 15 1156
[10] Tanabe M and Nakano H 2020 IEEE Trans. Antennas Propag. 68 7219
[11] Feng P Y, Qu S W and Yang S W 2020 IEEE Trans. Antennas Propag. 68 4540
[12] Zhang W T, Zheng S L, Hui X N, Chen Y L, Jin X F, Chi H and Zhang X M 2016 IEEE Antennas Wirel. Propag. Lett. 16 194
[13] Ren J and Leung K W 2018 Appl. Phys. Lett. 112 131103
[14] Meng X S, Chen X M, Yang L, Xue W, Zhang A X, Sha W E I and Cheng Q 2020 Appl. Phys. Lett. 117 243503
[15] Liu X, Deng J H, Jin M K, Tang Y T, Zhang X C, Li K F and Li G X 2019 Appl. Phys. Lett. 115 221102
[16] Sun Z C, Yan M Y and Xu B J 2020 Chin. Phys. B 29 104101
[17] Chen M L N, Jiang L J and Sha W E I 2019 IEEE Antennas Wirel. Propag. Lett. 18 477
[18] Wang H, Li Y F and Qu S B 2021 Chin. Phys. B 30 084101
[19] Wu J, Zhang Z X, Ren X G, Huang Z X and Wu X L 2019 IEEE Antennas Wirel. Propag. Lett. 18 1482
[20] Bai X D, Kong F W, Qian J Y, Song Y Z, He C, Liang X L, Jin R H and Zhu W R 2019 IEEE Antennas Wirel. Propag. Lett. 18 2696
[21] Yang L J, Sun S and Sha W E I 2020 IEEE Trans. Antennas Propag. 68 2166
[22] Lv H H, Huang Q L, Yi X J, Hou J Q and Shi X W 2020 IEEE Antennas Wirel. Propag. Lett. 19 881
[23] Yu S X, Kou N, Ding Z and ZHANG Z P 2019 Electron. Lett. 55 1029
[24] Kamali S M, Arbabi A, Arbabi E, Horie Y and Faraon A 2016 Nat. Commun. 7 11618
[25] Dubois M, Shi C Z, Wang Y and Zhang X 2017 Appl. Phys. Lett. 110 151902
[26] Wang Y J, Su J X, Li Z R, Guo Q X and Song J M 2020 IEEE Antennas Wirel. Propag. Lett. 19 631
[27] Liu K Y, Wang G M, Cai T, Li H P and Li T Y 2021 IEEE Trans. Antennas Propag. 69 3349
[28] Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y and Feng Y J 2021 IEEE Trans. Antennas Propag. 69 3332
[29] Gregoire D J 2013 IEEE Antennas Wirel. Propag. 12 233
[30] Song L Z, Qin P Y and Guo Y J 2021 IEEE Trans. Antennas Propag. 69 848
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[3] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[6] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[7] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[8] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[9] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[10] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[11] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[12] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[13] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[14] Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media
Jia-Wei Liu(刘佳伟), Hai-Ying Li(李海英), Wei Ding(丁炜), Lu Bai(白璐), Zhen-Sen Wu(吴振森), Zheng-Jun Li(李正军). Chin. Phys. B, 2019, 28(9): 094214.
[15] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
No Suggested Reading articles found!