|
|
Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation |
Ben Fu(付犇), Shi-Xing Yu(余世星)†, Na Kou(寇娜)‡, Zhao Ding(丁召), and Zheng-Ping Zhang(张正平) |
Key Laboratory of Micro-Nano-Electronics and Software Technology of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China |
|
|
Abstract We propose a cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation. Formulas for calculating the phase distributions of cylindrical conformal transmitted metasurface is presented. A prototype of the proposed conformal transmitted metasurface is designed, fabricated and measured. Measured results shows that the proposed conformal transmitted metasurface can effectively generate vortex waves, which verifies the effectiveness of our method. The proposed method may pave the way of vortex wave generation with cylindrical conformal devices.
|
Received: 02 September 2021
Revised: 26 October 2021
Accepted manuscript online: 17 November 2021
|
PACS:
|
07.57.Hm
|
(Infrared, submillimeter wave, microwave, and radiowave sources)
|
|
41.20.-q
|
(Applied classical electromagnetism)
|
|
42.50.Tx
|
(Optical angular momentum and its quantum aspects)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 61961006) and the Science Technology Foundation of Guizhou Province, China (Grant No. QKHJC[2020]1Y257). |
Corresponding Authors:
Shi-Xing Yu, Na Kou
E-mail: sxyu1@gzu.edu.cn;nkou@gzu.edu.cn
|
Cite this article:
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平) Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation 2022 Chin. Phys. B 31 040703
|
[1] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161 [2] Yan Y, Xie G D, Lavery M P J, Huang H, Ahmed N, Bao C J, Ren Y X, Cao Y W, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J and Willner A E 2014 Nat. Commun. 5 4876 [3] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488 [4] Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A and Romanato F 2012 New J. Phys. 14 033001 [5] Xu C, Zheng S L, Zhang W T, Chen Y L, Chi H, Jin X F and Zhang X M 2016 IEEE Microw. Wirel. Compon. Lett. 26 738 [6] Liu K, Cheng Y Q, Gao Y, Li X, Qin Y L and Wang H Q 2017 Appl. Phys. Lett. 110 164102 [7] Lin M T, Gao Y, Liu P G and Liu J B 2016 Electron. Lett. 52 1168 [8] Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H and Khamitova R 2007 Phys. Rev. Lett. 99 087701 [9] Chen Y L, Zheng S L, Li Y, Hui X N, Jin X F, Chi H and Zhang X M 2015 IEEE Antennas Wirel. Propag. Lett. 15 1156 [10] Tanabe M and Nakano H 2020 IEEE Trans. Antennas Propag. 68 7219 [11] Feng P Y, Qu S W and Yang S W 2020 IEEE Trans. Antennas Propag. 68 4540 [12] Zhang W T, Zheng S L, Hui X N, Chen Y L, Jin X F, Chi H and Zhang X M 2016 IEEE Antennas Wirel. Propag. Lett. 16 194 [13] Ren J and Leung K W 2018 Appl. Phys. Lett. 112 131103 [14] Meng X S, Chen X M, Yang L, Xue W, Zhang A X, Sha W E I and Cheng Q 2020 Appl. Phys. Lett. 117 243503 [15] Liu X, Deng J H, Jin M K, Tang Y T, Zhang X C, Li K F and Li G X 2019 Appl. Phys. Lett. 115 221102 [16] Sun Z C, Yan M Y and Xu B J 2020 Chin. Phys. B 29 104101 [17] Chen M L N, Jiang L J and Sha W E I 2019 IEEE Antennas Wirel. Propag. Lett. 18 477 [18] Wang H, Li Y F and Qu S B 2021 Chin. Phys. B 30 084101 [19] Wu J, Zhang Z X, Ren X G, Huang Z X and Wu X L 2019 IEEE Antennas Wirel. Propag. Lett. 18 1482 [20] Bai X D, Kong F W, Qian J Y, Song Y Z, He C, Liang X L, Jin R H and Zhu W R 2019 IEEE Antennas Wirel. Propag. Lett. 18 2696 [21] Yang L J, Sun S and Sha W E I 2020 IEEE Trans. Antennas Propag. 68 2166 [22] Lv H H, Huang Q L, Yi X J, Hou J Q and Shi X W 2020 IEEE Antennas Wirel. Propag. Lett. 19 881 [23] Yu S X, Kou N, Ding Z and ZHANG Z P 2019 Electron. Lett. 55 1029 [24] Kamali S M, Arbabi A, Arbabi E, Horie Y and Faraon A 2016 Nat. Commun. 7 11618 [25] Dubois M, Shi C Z, Wang Y and Zhang X 2017 Appl. Phys. Lett. 110 151902 [26] Wang Y J, Su J X, Li Z R, Guo Q X and Song J M 2020 IEEE Antennas Wirel. Propag. Lett. 19 631 [27] Liu K Y, Wang G M, Cai T, Li H P and Li T Y 2021 IEEE Trans. Antennas Propag. 69 3349 [28] Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y and Feng Y J 2021 IEEE Trans. Antennas Propag. 69 3332 [29] Gregoire D J 2013 IEEE Antennas Wirel. Propag. 12 233 [30] Song L Z, Qin P Y and Guo Y J 2021 IEEE Trans. Antennas Propag. 69 848 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|