Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094214    DOI: 10.1088/1674-1056/ab37f5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media

Jia-Wei Liu(刘佳伟), Hai-Ying Li(李海英), Wei Ding(丁炜), Lu Bai(白璐), Zhen-Sen Wu(吴振森), Zheng-Jun Li(李正军)
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710126, China
Abstract  

A comparison of differently polarized Bessel vortex beams propagating through a uniaxial anisotropic slab is discussed in terms of the vector wave function expansions. The magnitude profiles of electric field components, the transformation of polarization modes, and the distributions of orbital angular momentum (OAM) states of the reflected and transmitted beams for different incident angles are numerically simulated. The results indicate that the magnitude profiles of electric field components for different polarization modes are distinct from each other and have a great dependence on the incident angle, thus the transformation of polarization modes which reflects the change of energy can be affected largely. As compared to the x and circular polarization incidences, the reflected and transmitted beams for the radial polarization incidence suffer the fewest transformation of polarization modes, showing a better energy invariance. The distributions of OAM states of the reflected and transmitted beams for different polarization modes are diverse as well, and the derived OAM states of the transmitted beam for radial polarization present a focusing effect, concentrating on the state between two predominant OAM states.

Keywords:  orbital angular momentum      Bessel vortex beams      reflection and transmission      polarization  
Received:  08 May 2019      Revised:  10 July 2019      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  13.88.+e (Polarization in interactions and scattering)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61801349, 61875156, and 61571355) and the 111 Project, China (Grant No. B17035).

Corresponding Authors:  Hai-Ying Li     E-mail:  lihy@xidian.edu.cn

Cite this article: 

Jia-Wei Liu(刘佳伟), Hai-Ying Li(李海英), Wei Ding(丁炜), Lu Bai(白璐), Zhen-Sen Wu(吴振森), Zheng-Jun Li(李正军) Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media 2019 Chin. Phys. B 28 094214

[40] Fu S, Zhang S and Gao C 2016 Sci. Rep-Uk 6 30765
[1] Allen L, Beijersbergen M W, Spreeuw R J and Woerdman J P 1992 Phys. Rev. A 45 8185
[41] Mitri F G, Li R X, Guo L X and Ding C Y 2017 J. Quantum Spectrosc. Radiat. Transfer 187 97
[2] Wang C, Shao Q, Liu T, Ren Y 2018 Optical Precision Manufacturing, Testing and Applications 10847 1084703
[42] Chen J, Ng J, Wang P and Lin Z F 2010 Opt. Lett. 35 1674
[3] Ruffato G, Massari M and Romanato F 2014 Opt. Lett. 39 5094
[43] Ma X B and Li E B 2010 Chin. Opt. Lett. 8 1195
[4] Novitsky A V and Barkovsky L M 2008 J. Opt. A-Pure. Appl. Opt. 10 075006
[44] Gouesbet G, Wang J J and Han Y P 2010 Opt. Commun. 283 3235
[5] Zhou Z, Guo Y and Zhu L 2014 Chin. Phys. B 23 044201
[45] Zhang H Y and Han Y P 2008 J. Opt. Soc. Am. B 25 255
[6] Belyi V N, Khilo N A, Kazak N S, Ryzhevich A A and Forbes A 2011 Opt. Eng. 50 059001
[46] Wang M J, Zhang H Y, Liu G S, Li Y L and Dong Q F 2014 Opt. Express 22 3705
[7] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E and Ramachandran S 2013 Science 340 1545
[47] Li H Y, Honary F, Wang J J, Liu J W, Wu Z S and Bai L 2018 Appl. Opt. 57 1967
[8] Yan L, Gregg P, Karimi E, Rubano A, Marrucci L, Boyd R and Ramachandran S 2015 Optica 2 900
[48] Jiang Y S, Wang S H, Zhang J H, Ou J and Tang H 2013 Opt. Commun. 303 38
[9] Rui G, Gu B, Zhan Q and Cui Y 2016 Prog. Electromagn. Res. Symp. (PIERS) pp. 738-739
[49] Wang J J, Wriedt T, Lock J A and Madler L 2016 J. Quantum Spectrosc. Radiat. Transfer 184 218
[10] Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M and Franke-Arnold S 2004 Opt. Express 12 5448
[50] Wang J J, Wriedt T, Lock J A and Jiao Y C 2017 J. Quantum Spectrosc. Radiat. Transfer 195 8
[11] Wang J, Li S, Luo M, Liu J, Zhu L, Li C, Xie D, Yang Q, Yu S and Sun J 2014 Eur. Conf. Opt. Commun. (ECOC) pp. 1-3
[51] Yue Y, Huang H, Ahmed N, Yan Y, Ren Y X, Xie G D, Rogawski D, Tur M and Willner A E 2013 Opt. Lett. 38 5118
[12] Wang J, Liu J, Lv X, Zhu L, Wang D, Li S, Wang A, Zhao Y, Long Y and Du J 2015 Eur. Conf. Opt. Commun. (ECOC) p. 1
[13] Chaudhary S and Amphawan A 2018 Photon. Netw. Commun. 35 374
[14] Huang H, Xie G, Yan Y, Ahmed N, Ren Y, Yue Y, Rogawski D, Willner M J, Erkmen B I, Birnbaum K M, Dolinar S J, Lavery M P, Padgett M J, Tur M and Willner A E 2014 Opt. Lett. 39 197
[15] Zhu L, Zhu G, Wang A, Wang L, Ai J, Chen S, Du C, Liu J, Yu S and Wang J 2018 Opt. Lett. 43 1890
[16] Djordjevic I B, Zhang S L and Wang T 2017 13 th International Conference on Advanced Technologies, Systems and Services in Telecommunications (Telsiks) p. 317
[17] Sun T F, Liu M W, Li Z X, Li Y C, Zhang Q W and Wang M 2017 Opto-Electron. Commun. Conf. (Oecc) Photon. Global Conf. (Pgc) p. 1
[18] Ndagano B, Nape I, Cox M A, Rosales-Guzman C and Forbes A 2018 J. Lightwave Technol. 36 292
[19] Zhao M, Gao X, Xie M, Qian J, Song C and Huang S 2018 Opt. Commun. 426 126
[20] Stoian R, Bhuyan M K, Zhang G, Cheng G, Meyer R and Courvoisier F 2018 Adv. Opt. Technol. 7 165
[21] Djordjevic I B 2011 Opt. Express 19 14277
[22] Yu W H, Zhao R H, Deng F, Huang J Y, Chen C D, Yang X B, Zhao Y P and Deng D M 2016 Chin. Phys. B 25 044201
[23] Wang L Y, Zhang J B, Feng L Y, Pang Z H, Zhong T F and Deng D M 2018 Chin. Phys. B 27 054103
[24] Lo Y L and Yu T C 2006 Opt. Commun. 259 40
[25] Lu K and Saleh B E 1990 Opt. Eng. 29 240
[26] Chugunov Y V, Shirokov E A and Fomina I A 2015 Radiophys. Quant. EL + 58 318
[27] Li H Y, Liu J W, Bai L and Wu Z S 2018 Appl. Opt. 57 7353
[28] Durnin J, Miceli J Jr and Eberly J H 1987 Phys. Rev. Lett. 58 1499
[29] Zhang Y L, Ma D L, Yuan X H and Zhou Z Y 2016 Appl. Opt. 55 9211
[30] Chen B Y, Huang X S, Gou D Z, Zeng J Z, Chen G Q, Pang M J, Hu Y H, Zhao Z, Zhang Y F, Zhou Z, Wu H T, Cheng H P, Zhang Z G, Xu C, Li Y L, Chen L Y and Wang A M 2018 Biomed. Opt. Express 9 1992
[31] McGloin D, Garces-Chavez V and Dholakia K 2003 Opt. Lett. 28 657
[32] Volke-Sepulveda K, Garces-Chavez V, Chavez-Cerda S, Arlt J and Dholakia K 2002 J. Opt. B-Quantum S. O. 4 S82
[33] Birch P, Ituen I, Young R and Chatwin C 2015 J. Opt. Soc. Am. A 32 2066
[34] Collett E 1971 Am. J. Phys. 39 1483
[35] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488
[36] Yasa U G, Turduev M, Giden I H and Kurt H 2017 J. Lightwave Technol. 35 1677
[37] Quabis S, Dorn R, Eberler M, Glockl O and Leuchs G 2000 Opt. Commun. 179 1
[38] Nesterov A V and Niziev V G 2001 J. Opt. B-Quantum S. O. 3 S215
[39] King T A, Hogervorst W, Kazak N S, Khilo N A and Ryzhevich A A 2001 Opt. Commun. 187 407
[40] Fu S, Zhang S and Gao C 2016 Sci. Rep-Uk 6 30765
[41] Mitri F G, Li R X, Guo L X and Ding C Y 2017 J. Quantum Spectrosc. Radiat. Transfer 187 97
[42] Chen J, Ng J, Wang P and Lin Z F 2010 Opt. Lett. 35 1674
[43] Ma X B and Li E B 2010 Chin. Opt. Lett. 8 1195
[44] Gouesbet G, Wang J J and Han Y P 2010 Opt. Commun. 283 3235
[45] Zhang H Y and Han Y P 2008 J. Opt. Soc. Am. B 25 255
[46] Wang M J, Zhang H Y, Liu G S, Li Y L and Dong Q F 2014 Opt. Express 22 3705
[47] Li H Y, Honary F, Wang J J, Liu J W, Wu Z S and Bai L 2018 Appl. Opt. 57 1967
[48] Jiang Y S, Wang S H, Zhang J H, Ou J and Tang H 2013 Opt. Commun. 303 38
[49] Wang J J, Wriedt T, Lock J A and Madler L 2016 J. Quantum Spectrosc. Radiat. Transfer 184 218
[50] Wang J J, Wriedt T, Lock J A and Jiao Y C 2017 J. Quantum Spectrosc. Radiat. Transfer 195 8
[51] Yue Y, Huang H, Ahmed N, Yan Y, Ren Y X, Xie G D, Rogawski D, Tur M and Willner A E 2013 Opt. Lett. 38 5118
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[10] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[11] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[12] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[13] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[14] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[15] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
No Suggested Reading articles found!