ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media |
Jia-Wei Liu(刘佳伟), Hai-Ying Li(李海英), Wei Ding(丁炜), Lu Bai(白璐), Zhen-Sen Wu(吴振森), Zheng-Jun Li(李正军) |
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710126, China |
|
|
Abstract A comparison of differently polarized Bessel vortex beams propagating through a uniaxial anisotropic slab is discussed in terms of the vector wave function expansions. The magnitude profiles of electric field components, the transformation of polarization modes, and the distributions of orbital angular momentum (OAM) states of the reflected and transmitted beams for different incident angles are numerically simulated. The results indicate that the magnitude profiles of electric field components for different polarization modes are distinct from each other and have a great dependence on the incident angle, thus the transformation of polarization modes which reflects the change of energy can be affected largely. As compared to the x and circular polarization incidences, the reflected and transmitted beams for the radial polarization incidence suffer the fewest transformation of polarization modes, showing a better energy invariance. The distributions of OAM states of the reflected and transmitted beams for different polarization modes are diverse as well, and the derived OAM states of the transmitted beam for radial polarization present a focusing effect, concentrating on the state between two predominant OAM states.
|
Received: 08 May 2019
Revised: 10 July 2019
Accepted manuscript online:
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
13.88.+e
|
(Polarization in interactions and scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61801349, 61875156, and 61571355) and the 111 Project, China (Grant No. B17035). |
Corresponding Authors:
Hai-Ying Li
E-mail: lihy@xidian.edu.cn
|
Cite this article:
Jia-Wei Liu(刘佳伟), Hai-Ying Li(李海英), Wei Ding(丁炜), Lu Bai(白璐), Zhen-Sen Wu(吴振森), Zheng-Jun Li(李正军) Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media 2019 Chin. Phys. B 28 094214
|
[40] |
Fu S, Zhang S and Gao C 2016 Sci. Rep-Uk 6 30765
|
[1] |
Allen L, Beijersbergen M W, Spreeuw R J and Woerdman J P 1992 Phys. Rev. A 45 8185
|
[41] |
Mitri F G, Li R X, Guo L X and Ding C Y 2017 J. Quantum Spectrosc. Radiat. Transfer 187 97
|
[2] |
Wang C, Shao Q, Liu T, Ren Y 2018 Optical Precision Manufacturing, Testing and Applications 10847 1084703
|
[42] |
Chen J, Ng J, Wang P and Lin Z F 2010 Opt. Lett. 35 1674
|
[3] |
Ruffato G, Massari M and Romanato F 2014 Opt. Lett. 39 5094
|
[43] |
Ma X B and Li E B 2010 Chin. Opt. Lett. 8 1195
|
[4] |
Novitsky A V and Barkovsky L M 2008 J. Opt. A-Pure. Appl. Opt. 10 075006
|
[44] |
Gouesbet G, Wang J J and Han Y P 2010 Opt. Commun. 283 3235
|
[5] |
Zhou Z, Guo Y and Zhu L 2014 Chin. Phys. B 23 044201
|
[45] |
Zhang H Y and Han Y P 2008 J. Opt. Soc. Am. B 25 255
|
[6] |
Belyi V N, Khilo N A, Kazak N S, Ryzhevich A A and Forbes A 2011 Opt. Eng. 50 059001
|
[46] |
Wang M J, Zhang H Y, Liu G S, Li Y L and Dong Q F 2014 Opt. Express 22 3705
|
[7] |
Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E and Ramachandran S 2013 Science 340 1545
|
[47] |
Li H Y, Honary F, Wang J J, Liu J W, Wu Z S and Bai L 2018 Appl. Opt. 57 1967
|
[8] |
Yan L, Gregg P, Karimi E, Rubano A, Marrucci L, Boyd R and Ramachandran S 2015 Optica 2 900
|
[48] |
Jiang Y S, Wang S H, Zhang J H, Ou J and Tang H 2013 Opt. Commun. 303 38
|
[9] |
Rui G, Gu B, Zhan Q and Cui Y 2016 Prog. Electromagn. Res. Symp. (PIERS) pp. 738-739
|
[49] |
Wang J J, Wriedt T, Lock J A and Madler L 2016 J. Quantum Spectrosc. Radiat. Transfer 184 218
|
[10] |
Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M and Franke-Arnold S 2004 Opt. Express 12 5448
|
[50] |
Wang J J, Wriedt T, Lock J A and Jiao Y C 2017 J. Quantum Spectrosc. Radiat. Transfer 195 8
|
[11] |
Wang J, Li S, Luo M, Liu J, Zhu L, Li C, Xie D, Yang Q, Yu S and Sun J 2014 Eur. Conf. Opt. Commun. (ECOC) pp. 1-3
|
[51] |
Yue Y, Huang H, Ahmed N, Yan Y, Ren Y X, Xie G D, Rogawski D, Tur M and Willner A E 2013 Opt. Lett. 38 5118
|
[12] |
Wang J, Liu J, Lv X, Zhu L, Wang D, Li S, Wang A, Zhao Y, Long Y and Du J 2015 Eur. Conf. Opt. Commun. (ECOC) p. 1
|
[13] |
Chaudhary S and Amphawan A 2018 Photon. Netw. Commun. 35 374
|
[14] |
Huang H, Xie G, Yan Y, Ahmed N, Ren Y, Yue Y, Rogawski D, Willner M J, Erkmen B I, Birnbaum K M, Dolinar S J, Lavery M P, Padgett M J, Tur M and Willner A E 2014 Opt. Lett. 39 197
|
[15] |
Zhu L, Zhu G, Wang A, Wang L, Ai J, Chen S, Du C, Liu J, Yu S and Wang J 2018 Opt. Lett. 43 1890
|
[16] |
Djordjevic I B, Zhang S L and Wang T 2017 13 th International Conference on Advanced Technologies, Systems and Services in Telecommunications (Telsiks) p. 317
|
[17] |
Sun T F, Liu M W, Li Z X, Li Y C, Zhang Q W and Wang M 2017 Opto-Electron. Commun. Conf. (Oecc) Photon. Global Conf. (Pgc) p. 1
|
[18] |
Ndagano B, Nape I, Cox M A, Rosales-Guzman C and Forbes A 2018 J. Lightwave Technol. 36 292
|
[19] |
Zhao M, Gao X, Xie M, Qian J, Song C and Huang S 2018 Opt. Commun. 426 126
|
[20] |
Stoian R, Bhuyan M K, Zhang G, Cheng G, Meyer R and Courvoisier F 2018 Adv. Opt. Technol. 7 165
|
[21] |
Djordjevic I B 2011 Opt. Express 19 14277
|
[22] |
Yu W H, Zhao R H, Deng F, Huang J Y, Chen C D, Yang X B, Zhao Y P and Deng D M 2016 Chin. Phys. B 25 044201
|
[23] |
Wang L Y, Zhang J B, Feng L Y, Pang Z H, Zhong T F and Deng D M 2018 Chin. Phys. B 27 054103
|
[24] |
Lo Y L and Yu T C 2006 Opt. Commun. 259 40
|
[25] |
Lu K and Saleh B E 1990 Opt. Eng. 29 240
|
[26] |
Chugunov Y V, Shirokov E A and Fomina I A 2015 Radiophys. Quant. EL + 58 318
|
[27] |
Li H Y, Liu J W, Bai L and Wu Z S 2018 Appl. Opt. 57 7353
|
[28] |
Durnin J, Miceli J Jr and Eberly J H 1987 Phys. Rev. Lett. 58 1499
|
[29] |
Zhang Y L, Ma D L, Yuan X H and Zhou Z Y 2016 Appl. Opt. 55 9211
|
[30] |
Chen B Y, Huang X S, Gou D Z, Zeng J Z, Chen G Q, Pang M J, Hu Y H, Zhao Z, Zhang Y F, Zhou Z, Wu H T, Cheng H P, Zhang Z G, Xu C, Li Y L, Chen L Y and Wang A M 2018 Biomed. Opt. Express 9 1992
|
[31] |
McGloin D, Garces-Chavez V and Dholakia K 2003 Opt. Lett. 28 657
|
[32] |
Volke-Sepulveda K, Garces-Chavez V, Chavez-Cerda S, Arlt J and Dholakia K 2002 J. Opt. B-Quantum S. O. 4 S82
|
[33] |
Birch P, Ituen I, Young R and Chatwin C 2015 J. Opt. Soc. Am. A 32 2066
|
[34] |
Collett E 1971 Am. J. Phys. 39 1483
|
[35] |
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488
|
[36] |
Yasa U G, Turduev M, Giden I H and Kurt H 2017 J. Lightwave Technol. 35 1677
|
[37] |
Quabis S, Dorn R, Eberler M, Glockl O and Leuchs G 2000 Opt. Commun. 179 1
|
[38] |
Nesterov A V and Niziev V G 2001 J. Opt. B-Quantum S. O. 3 S215
|
[39] |
King T A, Hogervorst W, Kazak N S, Khilo N A and Ryzhevich A A 2001 Opt. Commun. 187 407
|
[40] |
Fu S, Zhang S and Gao C 2016 Sci. Rep-Uk 6 30765
|
[41] |
Mitri F G, Li R X, Guo L X and Ding C Y 2017 J. Quantum Spectrosc. Radiat. Transfer 187 97
|
[42] |
Chen J, Ng J, Wang P and Lin Z F 2010 Opt. Lett. 35 1674
|
[43] |
Ma X B and Li E B 2010 Chin. Opt. Lett. 8 1195
|
[44] |
Gouesbet G, Wang J J and Han Y P 2010 Opt. Commun. 283 3235
|
[45] |
Zhang H Y and Han Y P 2008 J. Opt. Soc. Am. B 25 255
|
[46] |
Wang M J, Zhang H Y, Liu G S, Li Y L and Dong Q F 2014 Opt. Express 22 3705
|
[47] |
Li H Y, Honary F, Wang J J, Liu J W, Wu Z S and Bai L 2018 Appl. Opt. 57 1967
|
[48] |
Jiang Y S, Wang S H, Zhang J H, Ou J and Tang H 2013 Opt. Commun. 303 38
|
[49] |
Wang J J, Wriedt T, Lock J A and Madler L 2016 J. Quantum Spectrosc. Radiat. Transfer 184 218
|
[50] |
Wang J J, Wriedt T, Lock J A and Jiao Y C 2017 J. Quantum Spectrosc. Radiat. Transfer 195 8
|
[51] |
Yue Y, Huang H, Ahmed N, Yan Y, Ren Y X, Xie G D, Rogawski D, Tur M and Willner A E 2013 Opt. Lett. 38 5118
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|