Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040704    DOI: 10.1088/1674-1056/ac2f31
GENERAL Prev   Next  

Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5

Tushagu Abudouwufu(吐沙姑·阿不都吾甫)1,2,3, Xiangyu Zhang (张翔宇)1,2, Wenbin Zuo (左文彬)1,2, Jinbao Luo(罗进宝)1,2, Yueqiang Lan(兰越强)1,2, Canxin Tian (田灿鑫)4, Changwei Zou(邹长伟)4, Alexander Tolstoguzov1,5, and Dejun Fu(付德君)1,2,†
1 Key Laboratory of Artificial Micro and Nanostructures of Ministry of Education and Hubei Key Laboratory of Nuclear Solid Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China;
2 Shenzhen Institute of Wuhan University, Shenzhen 518057, China;
3 Zhuhai Tsinghua University Research Institute Innovation Center, Zhuhai 519000, China;
4 School of Physics and Technology, Lingnan Normal University, Zhanjiang 524048, China;
5 Utkin Ryazan State Radio Engineering University, Ryazan 390005, Russian Federation
Abstract  Copper ion conducting solid electrolyte Rb$_{4}$Cu$_{16}$I$_{6.5}$Cl$_{13.5 }$ was prepared by means of mechano-chemical method. The structure and morphology of the powder was investigated by x-ray diffraction and scanning electron microscopy. The grain size was estimated to be 0.2-0.9 μm and the ionic conductivity at room temperature was approximately 0.206 S/cm. The solid electrolyte Rb$_{4}$Cu$_{16}$I$_{6.5}$Cl$_{13.5 }$ was exploited for copper ion beam generation. The copper ion emission current of several nA was successfully obtained at acceleration voltages of 15 kV and temperature of 197 $^\circ$C in vacuum of 2.1$\times10^{-4}$ Pa. A good linear correlation between the logarithmic ion current $(\log I)$ and the square root of the acceleration voltage ($U_{\rm acc}$) at high voltage range was obtained, suggesting the Schottky emission mechanism in the process of copper ion beam generation.
Keywords:  solid electrolyte      mechano-chemical synthesis      ion emission      ion-beam source  
Received:  02 July 2021      Revised:  09 October 2021      Accepted manuscript online:  13 October 2021
PACS:  07.77.Ka (Charged-particle beam sources and detectors)  
  79.70.+q (Field emission, ionization, evaporation, and desorption)  
  82.45.Gj (Electrolytes)  
Fund: This work was supported by Shenzhen Municipal Science and Technology Innovation Commission (Grant Nos. JCYJ20170818112901473 and GJHZ20200731095604015) and the Department of Science and Technology of Guangdong Province, China (Grant Nos. 2020A0505100059, 2020A1515011531, and 2020A1515011451). One of the authors (Alexander Tolstoguzov) is grateful to the support of this research by the Ministry of Education and Science of the Russian Federation in the frame of the state assignment (Grant No. FSSN-2020-0003).
Corresponding Authors:  Dejun Fu     E-mail:  djfu@whu.edu.cn

Cite this article: 

Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君) Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5 2022 Chin. Phys. B 31 040704

[1] He S N, Xu Y L, Chen Y J and Ma X N 2020 J. Mater. Chem. A 8 12594
[2] Kanno R, Takeda Y, Imura M and Yamamoto O 1982 J. Appl. Electrochem. 12 681
[3] Gombotz M, Hanghofer I, Eisbacher-Lubensky S and Wilkening H M R 2021 Solid State Sci. 118 106680
[4] Liu H C, Huang J, Cao L X, Su Y, Gao Z Y, Ma P F, Xia S Q, Ge W, Liu Q Y, Zhao S, Wang Y G, Huang J C, Zhou Z H, Zheng P F and Wang C X 2021 Chin. Phys. B 30 086106
[5] Agrawal R C and Gupta R K 1999 J. Mater. Sci. 34 1131
[6] Reuter B and Hardel K 1965 Z. Anorg. Allg. Chem. 340 158
[7] Boolchand P and Bresser W J 2001 Nature 410 1070
[8] Kavun V Y, Gerasimenko A V, Uvarov N F, Polyantsev M M and Zemnukhova L A 2016 J. Solid State Chem. 241 9
[9] Li Q X, Hayashi K, Nishioka M, Kashiwagi H, Hirano M, Torimoto Y, Hosono H and Sadakata M 2002 Appl. Phys. Lett. 80 4259
[10] Creus R, Sarradin J, Astier R, Pradel A and Ribes M 1989 Mater. Sci. Eng. B 3 109
[11] Daiko Y, Yamada T, Yamanishi S, Mineshige A and Yazawa T 2014 Electrochem. 82 901
[12] Daiko Y, Yanagida H, Honda S and Iwamoto Y 2020 Solid State Ionics 353 115400
[13] Yan Z, Pan H Y, Wang J Y, Chen R S, Luo F, Yu X Q and Li H 2020 Chin. Phys. B 29 088201
[14] Owens B B and Argue G R 1967 Science 157 308
[15] Whittingham M S and Huggins R A 1971 J. Chem. Phys. 54 414
[16] Ling S G, Peng J Y, Yang Q, Qiu J L, Lu J Z and Li H 2018 Chin. Phys. B 27 038201
[17] Fujiwara Y, Sakai T, Kaimai A, Yashiro K, Kawada T and Mizusaki J 2006 J. Vac. Sci. Technol. A 24 1818
[18] Berastegui P and Hull S 2002 Solid State Ionics 154-155 605
[19] Mellors G W and Louzos D V 1971 J. Electrochem. Soc. 118 846
[20] Escher C, Thomann S, Andreoli C, Fink H W, Toquant J and Pohl D W 2006 Appl. Phys. Lett. 89 053513
[21] Tolstoguzov A B, Aguas H, Ayouchi R, Belykh S F, Fernandes F, Gololobov G P, Moutinho A M C, Schwarz R, Suvorov D V and Teodoro O M N D 2016 Vacuum 131 252
[22] Chen J L, Zuo W B, Ke X W, Tolstoguzov A B, Tian C X, Devi N, Jha R, Panin G N and Fu D J 2019 Chin. Phys. B 28 060705
[23] Zuo W B, Pelenovich V O, Tolstoguzov A B, Zeng X M, Wang Z G, Song X Q, Gusev S I, Tian C X and Fu D J 2019 J. Alloys Compd. 790 109
[24] Abudouwufu T, Zuo W B, Pelenovich V O, Zhang X Y, Zeng X M, Tolstoguzov A B, Zou C W, Tian C X and Fu D J 2021 Solid State Ionics 364 115634
[25] Takahashi T, Yamamoto O, Yamoda S and Hayashi S 1979 J. Electrochem. Soc. 126 1654
[26] Takahashi T, Kanno R, Takeda Y and Yamamoto O 1981 Solid State ionics 34 283
[27] Masaru A, Haruhito S and Eita H 2021 Crystals 11 1008
[28] Kanno R, Ohno K, Kawamoto Y, Takeda Y, Yamamoto O, Kamiyama T, Asano H, Izumi F and Kondo S 1993 J. Solid State Chem. 102 79
[29] Gao J, Zhao Y S, Shi S Q and Li H 2016 Chin. Phys. B 25 018211
[30] Owens B B 2000 J. Power Sources 90 2
[31] Takehiko T, Osamu Y, Shuji Y and Hoyoshi S 1979 J. Electrochem. Soc. 126 1654
[32] Zuo W B, Pelenovich V O, Tolstogouzov A B, Ieshkin A E, Zeng X M, Wang Z G, Gololobov G, Suvorov D, Liu C S, Fu D J and Hu D H 2019 Vacuum 167 382
[33] Kiziroglou M E, Li X, Zhukov A A, de Groot P A J and de Groot C H 2008 Solid-State Electron. 52 1032
[34] Benilov M S 2009 Plasma Sources Sci. Technol. 18 014005
[1] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[2] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[3] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[4] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[5] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[6] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[7] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
[8] Structure, conductivity, and ion emission properties of RbAg4I5 solid electrolyte film prepared by pulsed laser deposition
Jun-Lian Chen(陈军联), Wen-Bin Zuo(左文彬), Xian-Wen Ke(柯贤文), Alexander B Tolstoguzov, Can-Xin Tian(田灿鑫), Neena Devi, Ranjana Jha, Gennady N Panin, De-Jun Fu(付德君). Chin. Phys. B, 2019, 28(6): 060705.
[9] Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating
Yi Wang(王怡), Bo-Nan Liu(刘柏男), Ge Zhou(周格), Kai-Hui Nie(聂凯会), Jie-Nan Zhang(张杰男), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068202.
[10] Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries
Wei Yang(杨伟), Qi-Di Wang(王启迪), Yu Lei(雷宇), Zi-Pei Wan(万子裴), Lei Qin(秦磊), Wei Yu(余唯), Ru-Liang Liu(刘如亮), Deng-Yun Zhai(翟登云), Hong Li(李泓), Bao-Hua Li(李宝华), Fei-Yu Kang(康飞宇). Chin. Phys. B, 2018, 27(6): 068201.
[11] Enhanced ionic conductivity in LAGP/LATP composite electrolyte
Shi-Gang Ling(凌仕刚), Jia-Yue Peng(彭佳悦), Qi Yang(杨琪), Ji-Liang Qiu(邱纪亮), Jia-Ze Lu(卢嘉泽), Hong Li(李泓). Chin. Phys. B, 2018, 27(3): 038201.
[12] Imaging the diffusion pathway of Al3+ ion in NASICON-type (Al0.2Zr0.8)20/19Nb(PO4)3 as electrolyte for rechargeable solid-state Al batteries
Jie Wang(王捷), Chun-Wen Sun(孙春文), Yu-Dong Gong(巩玉栋), Huai-Ruo Zhang(张怀若), Jose Antonio Alonso, María Teresa Fernández-Díaz, Zhong-Lin Wang(王中林), John B Goodenough. Chin. Phys. B, 2018, 27(12): 128201.
[13] Forming solid electrolyte interphase in situ in an ionic conductingLi1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) basedseparator for Li-ion batteries
Jiao-Yang Wu(吴娇杨), Shi-Gang Ling(凌仕刚), Qi Yang(杨琪), Hong Li(李泓), Xiao-Xiong Xu(许晓雄), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(7): 078204.
[14] Spectral and ion emission features of laser-produced Sn and SnO2 plasmas
Hui Lan(兰慧), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗). Chin. Phys. B, 2016, 25(3): 035202.
[15] All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science
Xiayin Yao(姚霞银), Bingxin Huang(黄冰心), Jingyun Yin(尹景云), Gang Peng(彭刚), Zhen Huang(黄祯), Chao Gao(高超), Deng Liu(刘登), Xiaoxiong Xu(许晓雄). Chin. Phys. B, 2016, 25(1): 018802.
No Suggested Reading articles found!