|
|
Measuring Loschmidt echo via Floquet engineering in superconducting circuits |
Shou-Kuan Zhao(赵寿宽)1,2, Zi-Yong Ge(葛自勇)1,2, Zhong-Cheng Xiang(相忠诚)1, Guang-Ming Xue(薛光明)3, Hai-Sheng Yan(严海生)1,2, Zi-Ting Wang(王子婷)1,2, Zhan Wang(王战)1,2, Hui-Kai Xu(徐晖凯)3, Fei-Fan Su(宿非凡)1, Zhao-Hua Yang(杨钊华)1,2, He Zhang(张贺)1,2, Yu-Ran Zhang(张煜然)4, Xue-Yi Guo(郭学仪)1, Kai Xu(许凯)1,5, Ye Tian(田野)1, Hai-Feng Yu(于海峰)3, Dong-Ning Zheng(郑东宁)1,2,5,6, Heng Fan(范桁)1,2,5,6, and Shi-Ping Zhao(赵士平)1,2,5,6,† |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 4 Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan; 5 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 6 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract The Loschmidt echo is a useful diagnostic for the perfection of quantum time-reversal process and the sensitivity of quantum evolution to small perturbations. The main challenge for measuring the Loschmidt echo is the time reversal of a quantum evolution. In this work, we demonstrate the measurement of the Loschmidt echo in a superconducting 10-qubit system using Floquet engineering and discuss the imperfection of an initial Bell-state recovery arising from the next-nearest-neighbor (NNN) coupling present in the qubit device. Our results show that the Loschmidt echo is very sensitive to small perturbations during quantum-state evolution, in contrast to the quantities like qubit population that is often considered in the time-reversal experiment. These properties may be employed for the investigation of multiqubit system concerning many-body decoherence and entanglement, etc., especially when devices with reduced or vanishing NNN coupling are used.
|
Received: 23 November 2021
Revised: 02 December 2021
Accepted manuscript online: 08 December 2021
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
85.25.Cp
|
(Josephson devices)
|
|
Fund: This work was supported in part by the Key-Area Research and Development Program of Guang-Dong Province, China (Grant No. 2018B030326001) and the National Key R&D Program of China (Grant No. 2017YFA0304300). Y. R. Z. was supported by the Japan Society for the Promotion of Science (JSPS) (Postdoctoral Fellowship via Grant No. P19326, and KAKENHI via Grant No. JP19F19326). H. Y. acknowledges support from the Natural Science Foundation of Beijing, China (Grant No. Z190012) and the National Natural Science Foundation of of China (Grant No. 11890704). H. F. acknowledges support from the National Natural Science Foundation of China (Grant No. T2121001), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and Beijing Natural Science Foundation, China (Grant No. Z200009). |
Corresponding Authors:
Shi-Ping Zhao
E-mail: spzhao@iphy.ac.cn
|
Cite this article:
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平) Measuring Loschmidt echo via Floquet engineering in superconducting circuits 2022 Chin. Phys. B 31 030307
|
[1] Gorin T, Prosen T, Seligman T H and Žnidarič M 2006 Phys. Rep. 435 33 [2] Jalabert R A and Pastawski H M 2001 Phys. Rev. Lett. 86 2490 [3] Zangara P R, Dente A D, Levstein P R and Pastawski H M 2012 Phys. Rev. A 86 012322 [4] Ho W W and Abanin D A 2017 Phys. Rev. B 95 094302 [5] Omanakuttan S and Lakshminarayan A 2021 Phys. Rev. E 103 012207 [6] Xu K, Sun Z H, Liu W X, Zhang Y R, Li H K, Dong H, Ren W H, Zhang P F, Nori F, Zheng D N, Fan H and Wang H 2020 Sci. Adv. 6 eaba4935 [7] Braumüller J, Karamlou A H, Yanay Y, Kannan B, Kim D, Kjaer-gaard M, Melville A, Niedzielski B M, Sung Y, Vepsäläinen A, Winik R, Yoder J L, Orlando T P, Gustavsson S, Tahan C and Oliver W D 2021 arXiv:2102.11751[quant-ph]. [8] Yan B, Cincio L and Zurek W H 2020 Phys. Rev. Lett. 124 160603 [9] Eckardt A 2017 Rev. Mod. Phys. 89 011004 [10] Wu Y, Yang L, Gong M, Zheng Y, Deng H, Yan Z, Zhao Y, Huang K, Castellano A D, Munro W J, Nemoto K, Zheng D, Sun C P, Liu Y X, Zhu X and Lu L 2018 npj Quantum Inf. 4 50 [11] Lu Y, Chakram S, Leung N, Earnest N, Naik R K, Huang Z, Groszkowski P, Kapit E, Koch J and Schuster D I 2017 Phys. Rev. Lett. 119 150502 [12] Reagor M, Osborn C B, Tezak N, et al. 2018 Sci. Adv. 4 eaao3603 [13] Xu Y, Hua Z, Chen T, Pan X, Li X, Han J, Cai W, Ma Y, Wang H, Song Y P, Xue Z Y and Sun L 2020 Phys. Rev. Lett. 124 230503 [14] Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Appl. 10 054009 [15] Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z, Jia S and Sun L 2019 Phys. Rev. Lett. 123 080501 [16] Zhao S K, Ge Z Y, Xiang Z C, Xue G M, Yan H S, Wang Z T, Wang Z, Xu H K, Su F F, Yang Z H, Zhang H, Zhang Y R, Guo X Y, Xu K, Tian Y, Yu H F, Zheng D N, Fan H and Zhao S P 2021 arXiv:2108.01276[quant-ph]. [17] Roushan P, Neill C, Tangpanitanon J, et al. 2017 Science 358 1175 [18] Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753 [19] Ye Y, Ge Z Y, Wu Y, et al. 2019 Phys. Rev. Lett. 123 050502 [20] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) p. 409 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|