Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 030308    DOI: 10.1088/1674-1056/ac40f7
GENERAL Prev   Next  

Quantum properties near the instability boundary in optomechanical system

Han-Hao Fang(方晗昊)1,2, Zhi-Jiao Deng(邓志姣)1,2,†, Zhigang Zhu(朱志刚)3, and Yan-Li Zhou(周艳丽)1,2
1 Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China;
2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China;
3 Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  The properties of the system near the instability boundary are very sensitive to external disturbances, which is important for amplifying some physical effects or improving the sensing accuracy. In this paper, the quantum properties near the instability boundary in a simple optomechanical system have been studied by numerical simulation. Calculations show that the transitional region connecting the Gaussian states and the ring states when crossing the boundary is sometimes different from the region centered on the boundary line, but it is more essential. The change of the mechanical Wigner function in the transitional region directly reflects its bifurcation behavior in classical dynamics. Besides, quantum properties, such as mechanical second-order coherence function and optomechanical entanglement, can be used to judge the corresponding bifurcation types and estimate the parameter width and position of the transitional region. The non-Gaussian transitional states exhibit strong entanglement robustness, and the transitional region as a boundary ribbon can be expected to replace the original classical instability boundary line in future applications.
Keywords:  optomechanical system      instability boundary      transitional region      quantum properties  
Received:  18 September 2021      Revised:  04 December 2021      Accepted manuscript online:  08 December 2021
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 11574398, 12174448, 12174447, 11904402, 12074433, 11871472, and 12004430).
Corresponding Authors:  Zhi-Jiao Deng     E-mail:  dengzhijiao926@hotmail.com

Cite this article: 

Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽) Quantum properties near the instability boundary in optomechanical system 2022 Chin. Phys. B 31 030308

[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[2] Qiu L, Shomroni I, Seidler P and Kippenberg T J 2020 Phys. Rev. Lett. 124 173601
[3] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
[4] Xu X, Gullans M and Taylor J M 2015 Phys. Rev. A 91 013818
[5] Deng Z J, Habraken S J M and Marquardt F 2016 New J. Phys. 18 063022
[6] Dutta S and Cooper N R 2019 Phys. Rev. Lett. 123 250401
[7] Meng Q X, Deng Z J, Zhu Z G and Huang L 2020 Phys. Rev. A 101 023838
[8] Peterson G A, Kotler S, Lecocq F, Cicak K, Jin X Y, Simmonds R W, Aumentado J and Teufel J D 2019 Phys. Rev. Lett. 123 247701
[9] Wang G, Huang L, Lai Y C and Grebogi C 2014 Phys. Rev. Lett. 112 110406
[10] Zhang D and Zheng Q 2013 Chin. Phys. Lett. 30 024213
[11] Li W, Piergentili P, Li J, Zippilli S, Natali R, Malossi N, Giuseppe G D and Vitali D 2020 Phys. Rev. A 101 013802
[12] Rabl P 2011 Phys. Rev. Lett. 107 063601
[13] Nunnenkamp A, B crkje K and Girvin S M 2011 Phys. Rev. Lett. 107 063602
[14] Ludwig M, Kubala B and Marquardt F 2008 New J. Phys. 10 095013
[15] Qian J, Clerk A A, Hammerer K and Marquardt F 2012 Phys. Rev. Lett. 109 253601
[16] Nation P D 2013 Phys. Rev. A 88 053828
[17] Rodrigues D A and Armour A D 2010 Phys. Rev. Lett. 104 053601
[18] Armour A D and Rodrigues D A 2012 C. R. Physique 13 440
[19] Crawford J D 1991 Rev. Mod. Phys. 63 991
[20] Walls D F and Milburn G J 2008 Quantum Optics, 2nd Ed. (Berlin:Springer-Verlag) pp. 38-42
[21] Law C K 1995 Phys. Rev. A 51 2537
[22] Gardiner C W and Collett M J 1985 Phys. Rev. A 31 3761
[23] Aldana S, Bruder C and Nunnenkamp A 2013 Phys. Rev. A 88 043826
[24] Marquardt F, Harris J G E and Girvin S M 2006 Phys. Rev. Lett. 96 103901
[25] Bakemeier L, Alvermann A and Fehske H 2015 Phys. Rev. Lett. 114 013601
[26] Strogatz S H 1994 Nonlinear Dynamics and Chaos (Cambridge:Perseus Publishing) pp. 18-26
[27] Johansson J R, Nation P D and Nori F 2013 Comp. Phys. Comm. 184 1234
[28] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[5] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[6] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[7] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[8] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[9] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[10] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[11] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[12] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[13] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[14] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
[15] Controllable optical bistability in a three-mode optomechanical system with a membrane resonator
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬). Chin. Phys. B, 2018, 27(7): 074214.
No Suggested Reading articles found!