Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 030306    DOI: 10.1088/1674-1056/ac1928
GENERAL Prev   Next  

Alternative non-Gaussianity measures for quantum states based on quantum fidelity

Cheng Xiang(向成)1,2, Shan-Shan Li(李珊珊)1,2, Sha-Sha Wen(文莎莎)1,2, and Shao-Hua Xiang(向少华)1,2,†
1 College of Electrical and Information Engineering, Huaihua University, Huaihua 418008, China;
2 Hunan Provincial Key Laboratory of Ecological Agriculture Intelligent Control Technology, Huaihua 418008, China
Abstract  We propose three alternative measures for non-Gaussianity of quantum states: sine distance, Bures angle, and Bures distance, which are based on quantum fidelity introduced by Wang [Phys. Lett. A 373 58 (2008)]. Using them, we evaluate the non-Gaussianity of some relevant single-mode and two-mode non-Gaussian states and find a good consistency of the three examined measures. In addition, we show that such metrics can exactly quantify the degree of Gaussianity of even Schrödinger-cat-like states of small amplitudes that can not be measured by other known non-Gaussianity measures such as the Hilbert—Schmidt metric and the relative entropy metric. We make a comparative study between all existing non-Gaussianity measures according to the metric axioms and point out that the sine distance is the best candidate among them.
Keywords:  non-Gaussianity      quantum fidelity      non-Gaussian states      sine metric  
Received:  13 May 2021      Revised:  23 July 2021      Accepted manuscript online:  30 July 2021
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ30535), the Science and Technology Innovation Foundation for College Students in Hunan Province of China (Grant No. 2020RC1013), and the Research Foundation for Young Teachers from the Education Department of Hunan Province of China (Grant No. 20B460).
Corresponding Authors:  Shao-Hua Xiang     E-mail:  shxiang97@163.com

Cite this article: 

Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华) Alternative non-Gaussianity measures for quantum states based on quantum fidelity 2022 Chin. Phys. B 31 030306

[1] Opatrný T, Kurizki G and Welsch D G 2000 Phys. Rev. A 61 032302
[2] Olivares S, Paris M G A and Bonifacio R 2003 Phys. Rev. A 67 032314
[3] Zhang S L, Jin C H, Shi J H, Guo J S, Zou X B and Guo G C 2017 Chin. Phys. Lett. 34 40302
[4] Cerf N J, Kruger O, Navez P, Werner R F and Wolf M M 2005 Phys. Rev. Lett. 95 070501
[5] Fiurasek J 2002 Phys. Rev. Lett. 89 137904
[6] Zhang S L, Guo J S, Shi J H and Guo G C 2017 Chin. Phys. Lett. 33 70303
[7] Lee J, Park J and Nha H 2019 npj Quantum Inf. 5 49
[8] Rossi M A C, Albarelli F and Paris M G A 2016 Phys. Rev. A 93 053805
[9] Genoni M G, Paris M G A and Banaszek K 2007 Phys. Rev. A 76 042327
[10] Genoni M G, Paris M G A and Banaszek K 2008 Phys. Rev. A 78 060303(R)
[11] Ivan J S, Kumar M S and Simon R 2012 Quantum Inf. Proc. 11 853
[12] Fu S S, Luo S L and Zhang Y 2020 Phys. Rev. A 101 012125
[13] Gilchrist A, Langford N K and Nielsen M A 2005 Phys. Rev. A 71 062310
[14] Jozsa R 1994 J. Mod. Opt. 41 2315
[15] Uhlmann A 1976 Rep. Math. Phys. 9 273
[16] Wang X G, Yu C S and Yi X X 2008 Phys. Lett. A 373 58
[17] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[18] Bures D 1969 Trans. Am. Math. Soc. 135 199
[19] Dodonov V V, Man'ko O V, Man'ko V I and Wunsche A 2000 J. Mod. Opt. 47 633
[20] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[21] Spehner D and Orszag M 2013 New J. Phys. 15 103001
[22] Lemos G B, Gomes R M, Walborn S P, Ribeiro P H S and Toscano F 2012 Nat. Commun. 3 1211
[23] Gu S J 2010 Int. J. Mod. Phys. B 24 4371
[24] Wang B, Huang H L, Sun Z Y and Kou S P 2012 Chin. Phys. Lett. 29 120301
[25] Mendonca P E M F, Napolitano R D J, Marchiolli M A, Foster C J and Liang Y C 2008 Phys. Rev. A 78 052330
[26] Miszczak J A, Puchala Z, Horodecki P, Uhlmann A and Zyczkowski K 2009 Quantum Inf. Comput. 9 0103
[27] Chen J L, Fu L B, Ungar A A and Zhao X G 2002 Phys. Rev. A 65 054304
[28] Wootter W K 1981 Phys. Rev. D 23 357
[29] Rastegin A E 2002 Phys. Rev. A 66 042304
[30] Ghiu I, Marian P and Marian T A 2013 Phys. Scr. T153 014028
[31] Tang X B, Gao F, Wang Y X, Kuang S and Shuang F 2015 Chin. Phys. B 24 034208
[32] Mandilara A and Cerf N J 2012 Phys. Rev. A 86 030102(R)
[33] Hertz A, Karpov E, Mandilara A and Cerf N J 2016 Phys. Rev. A 93 032330
[34] Baek K and Nha H 2018 Phys. Rev. A 98 042314
[35] Genoni M G and Paris M G A 2010 Phys. Rev. A 82 052341
[36] Miranowicz A and Grudka A 2004 Phys. Rev. A 70 032326
[37] Yang G, Xing L, Nie M, Liu Y H and Zhang M L 2021 Chin. Phys. B 30 030301
[1] Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory
Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧). Chin. Phys. B, 2018, 27(10): 100305.
[2] Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement
Liao Xiang-Ping (廖湘萍), Fang Mao-Fa (方卯发), Fang Jian-Shu (方见树), Zhu Qian-Quan (朱钱泉). Chin. Phys. B, 2014, 23(2): 020304.
[3] Non-Gaussianity and decoherence of generalized photon-added coherent state as a Hermite-excited coherent state
Li Heng-Mei(李恒梅) and Xu Xue-Fen(许雪芬) . Chin. Phys. B, 2012, 21(2): 024202.
No Suggested Reading articles found!