Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037802    DOI: 10.1088/1674-1056/ac3067
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids

Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌)
Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  The methylammonium lead triiodide (CH3NH3PbI3)-based perovskite shows a great alluring prospect in areas of solar cells, lasers, photodetectors, and light emitting diodes owing to their excellent optical and electrical advantages. However, it is very sensitive to the surrounding oxygen and moisture, which limits its development seriously. It is urgent to spare no effort to enhance its optical and electrical stability for further application. In this paper, we synthesize the MAPbI3 perovskite film on the glass substrate with/without the ionic liquid (IL) of 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) by a simple two-step sequential solution method. The additive of BMIMBF4 can improve the quality of crystal structure. Moreover, the photo-luminescence (PL) intensity of MAPbI3 film with BMIMBF4 is much stronger than the pure MAPbI3 film after a week in the air, which is almost ten-fold of the pure one. Meanwhile, under the illumination of 405-nm continuous wave (CW) laser, the fluorescent duration of the MAPbI3 film with BMIMBF4 is approximately 2.75 min, while the pure MAPbI3 film is only about 6 s. In fact, ionic liquid of BMIMBF4 in the perovskite film plays a role of passivation, which prevents the dissolution of MAPbI3 into CH3NH3 and PbI2 and thus enhances the stability of environment. In addition, the ionic liquid of BMIMBF4 possesses high ionic conductivity, which accelerates the electron transport, so it is beneficial for the perovskite film in the areas of solar cells, photodetectors, and lasers. This interesting experiment provides a promising way to develop the perovskite's further application.
Keywords:  CH3NH3PbI3 perovskite film      photo-luminescence      BMIMBF4 ionic liquid  
Received:  13 August 2021      Revised:  07 October 2021      Accepted manuscript online:  18 October 2021
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  78.68.+m (Optical properties of surfaces)  
  78.66.Sq (Composite materials)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFC2001100), the Natural National Science Foundation of China (Grant No. 61574017), the Fundamental Research Funds for Central Universities, China (Grant No. 2017CX10007), and the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University (Grant No. 2020GXYSOF08).
Corresponding Authors:  Ruibin Liu     E-mail:  liusir@bit.edu.cn

Cite this article: 

Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌) Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids 2022 Chin. Phys. B 31 037802

[1] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[2] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
[3] Michael M, Lee J T, Tsutomu M, Takurou N M and Henry J S 2012 Science 338 643
[4] Tombe S, Adam G, Heilbrunner H, Apaydin D H, Ulbricht C, Sariciftci N S, Arendse C J, Iwuoha E and Scharber M C 2017 J. Mater. Chem. C 5 1714
[5] Fang Y and Huang J 2015 Adv. Mater. 27 2804
[6] Leung S F, Ho K T, Kung P K, Hsiao V K S, Alshareef H N, Wang Z L and He J H 2018 Adv. Mater. 30 1704611
[7] Wei H, Tang Y, Feng B and You H 2017 Chin. Phys. B 26 128801
[8] Li P, Chen Y, Yang T, Wang Z, Lin H, Xu Y, Li L, Mu H, Shivananju B N, Zhang Y, Zhang Q, Pan A, Li S, Tang D, Jia B, Zhang H and Bao Q 2017 ACS Appl. Mater. Interfaces 9 12759
[9] Zhang X, Dong X, Wang S, Liu H, Hu W and Li X 2021 Chem. Eng. J. 404 125957
[10] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A and Gratzel M 2016 Energy Environ. Sci. 9 1989
[11] You J, Yang Y, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G and Yang Y 2014 Appl. Phys. Lett. 105 183902
[12] Zhang N, Fan Y, Wang K, Gu Z, Wang Y, Ge L, Xiao S and Song Q 2019 Nat. Commun. 10 1770
[13] Jia E D, Lou X, Zhou C L, Hao W C and Wang W J 2017 Chin. Phys. B 26 068803
[14] Yang J, D.Siempelkamp B, Liu D and Kelly T L 2015 ACS Nano 9 1955
[15] Jin F, Ji J T, Xie C, Wang Y M, He S N, Zhang Lei, Yang Z R, Yan F and Zhang Q M 2019 Chin. Phys. B 28 076102
[16] Lu Y B, Cong W Y, Guan C, Sun H, Xin Y, Wang K and Song S 2019 J. Mater. Chem. A 7 27469
[17] Wan Y, Dong S, Wang Y, Yang L, Qin W, Cao H, Yao C, Ge Z and Yin S 2016 RSC Adv. 6 97848
[18] Chu Y, Chen Y, Zhou J, Zhou B and Huang J 2019 ACS Appl. Mater. Interfaces 11 14510
[19] Zhang W, Liu X, He B, Gong Z, Zhu J, Ding Y, Chen H and Tang Q 2020 ACS Appl. Mater. Interfaces 12 4540
[20] Marand Z R, Kermanpur A, Karimzadeh F, Barea E M, Hassanabadi E, Anaraki E H, Julian-Lopez B, Masi S and Mora-Sero I 2020 Nanomaterials 10 872
[21] Fan P, Gu D, Liang G X, Luo J T, Chen J L, Zheng Z H and Zhang D P 2016 Sci. Rep. 6 29910
[22] Chen L C, Chen J C, Chen C C and Wu C G 2015 Nanoscale Res. Lett. 10 312
[23] Wu Z Y, Jian B L and Hsu H C 2019 Opt. Mater. Express 9 1882
[24] Schouwink P, Ley M B, Tissot A, Hagemann H, Jensen T R, Smrcok L and Cerny R 2014 Nat. Commun. 5 5706
[25] Chu W, Yang J, Jiang Q, Li X and Xin J 2018 Appl. Surf. Sci. 440 1116
[26] Wang X, Wan S, He Y, Qiu S, Ma X, Wazir N, Tian Y and Liu R 2021 Spectrochimica Acta Part B:Atomic Spectroscopy 178 106123
[27] O'regan B C, Barnes P R F, Li X, Law C, Palomares E and Marin-Beloqui J M 2015 J. Am. Chem. Soc. 137 5087
[28] Ali N, Liang C, Ji C, Zhang H, Sun M, Li D, You F and He Z 2020 Org. Electron. 84 105805
[29] Ji D, Kang Y S and Kang S W 2015 Sci. Rep. 5 16362
[30] Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Aron Walsh and Wei S H 2018 Chin. Phys. Lett. 35 036104
[31] Yang F, Kamarudin M A, Kapil G, Hirotani D, Zhang P, Ng C H, Ma T and Hayase S 2018 ACS Appl. Mater. Interfaces 10 24543
[32] Liu X, Lin F, Chueh C C, Chen Q, Zhao T, Liang P W, Zhu Z, Sun Y and Jen A K Y 2016 Nano Energy 30 417
[33] Wang R, Xue J, Meng L, Lee J W, Zhao Z, Sun P, Cai L, Huang T, Wang Z, Wang Z K, Duan Y, Yang J L, Tan S, Yuan Y, Huang Y and Yang Y 2019 Joule 3 1464
[34] Fei C, Li B, Zhang R, Fu H, Tian J and Cao G 2017 Adv. Energy Mater. 7 1602017
[35] Zhang Y, Grancini G, Fei Z, Shirzadi E, Liu X, Oveisi E, Tirani F F, Scopelliti R, Feng Y, Nazeeruddin M K and Dyson P J 2019 Nano Energy 58 105
[36] Wang S, Li Z, Zhang Y, Liu X, Han J, Li X, Liu Z, Liu S and Choy W C H 2019 Adv. Funct. Mater. 29 1900417
[37] Moore D T, Tan K W, Sai H, Barteau K P, Wiesner U and Estroff L A 2015 Chem. Mater. 27 3197
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Impact of composition ratio on the structure and optical properties of (1-x)MnFe2O4/(x)ZnMn2O4 nanocomposite
Zein K. Heiba, Mohamed Bakr Mohamed, Ali A. Alkathiri, Sameh I. Ahmed, A A Alhazime. Chin. Phys. B, 2022, 31(7): 077102.
[6] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[7] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[8] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[9] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[10] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[11] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[12] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[13] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[14] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[15] Monolithic epitaxy and optoelectronic properties of single-crystalline γ-In2Se3 thin films on mica
Xibo Yin(尹锡波), Yifan Shen(沈逸凡), Chaofan Xu(徐超凡), Jing He(贺靖), Junye Li(李俊烨), Haining Ji(姬海宁), Jianwei Wang(王建伟), Handong Li(李含冬), Xiaohong Zhu(朱小红), Xiaobin Niu(牛晓滨), and Zhiming Wang(王志明). Chin. Phys. B, 2021, 30(1): 017701.
No Suggested Reading articles found!