Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028204    DOI: 10.1088/1674-1056/ac272e
Special Issue: SPECIAL TOPIC — Organic and hybrid thermoelectrics
SPECIAL TOPIC—Organic and hybrid thermoelectrics Prev   Next  

N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator

Lu Yang(杨璐)1,†, Chenghao Liu(刘程浩)1,†, Yalong Wang(王亚龙)1, Pengcheng Zhu(朱鹏程)4, Yao Wang(王瑶)1,3,‡, and Yuan Deng(邓元)2,3,§
1 School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
2 Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, China;
3 Research Institute for Frontier Science, Beihang University, Beijing 100191, China;
4 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Abstract  With the growing need on distributed power supply for portable electronics, energy harvesting from environment becomes a promising solution. Organic thermoelectric (TE) materials have advantages in intrinsic flexibility and low thermal conductivity, thus hold great prospect in applications as a flexible power generator from dissipated heat. Nevertheless, the weak electrical transport behaviors of organic TE materials have severely impeded their development. Moreover, compared with p-type organic TE materials, stable and high-performance n-type counterparts are more difficult to obtain. Here, we developed a n-type polyaniline-based hybrid with core-shell heterostructured Bi2S3@Bi nanorods as fillers, showing a Seebeck coefficient -159.4 μV/K at room temperature. Further, a couple of n/p legs from the PANI-based hybrids were integrated into an elastomer substrate forming a stretchable thermoelectric generator (TEG), whose function to output stable voltages responding to temperature differences has been demonstrated. The in situ output performance of the TEG under stretching could withstand up to 75% elongation, and stability test showed little degradation over a one-month period in the air. This study provides a promising strategy to develop stable and high thermopower organic TEGs harvesting heat from environment as long-term power supply.
Keywords:  polyaniline-based hybrids      thermoelectric properties      n-type      stretchable electronics  
Received:  18 August 2021      Revised:  09 September 2021      Accepted manuscript online:  16 September 2021
PACS:  82.35.Cd (Conducting polymers)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
  85.80.Fi (Thermoelectric devices)  
Fund: The study was supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100 and 2018YFB0703600), the National Natural Science Foundation of China (Grant Nos. 51872009 and 92066203), Beijing Nova Programme Interdisciplinary Cooperation Project, and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Yao Wang, Yuan Deng     E-mail:  wang-yao@buaa.edu.cn;dengyuan@buaa.edu.cn

Cite this article: 

Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元) N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator 2022 Chin. Phys. B 31 028204

[1] Russ B, Glaudell A, Urban J J, Chabinyc M L and Segalman R A 2016 Nat. Rev. Mater. 1 16050
[2] Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M and Crispin X 2011 Nat. Mater. 10 429
[3] Kim G H, Shao L, Zhang K and Pipe K P 2013 Nat. Mater. 12 719
[4] Jiang F X, Xu J K, Lu B Y, Xie Y, Huang R J and Li L F 2008 Chin. Phys. Lett. 25 2202
[5] Jacobs I E and Moule A J 2017 Adv. Mater. 29 1703063
[15] Wan C L, Gu X K, Dang F, Itoh T, Wang Y F, Sasaki H, Kondo M, Koga K, Yabuki K Y, Snyder G J, Yang R G and Koumoto K 2015 Nat. Mater. 14 622
[6] Wang L M, Zhang Z M, Liu Y C, Wang B R, Fang L, Qiu J J, Zhang K and Wang S R 2018 Nat. Commun. 9 3817
[7] Wang M C and Lin S C 2016 Adv. Funct. Mater. 26 5297
[8] Jin H L, Li J, Iocozzia J, Zeng X, Wei P C, Yang C, Nan L, Liu Z P, He J H, Zhu T J, Wang J C, Lin Z Q and Wang S 2019 Angew. Chem. Int. Ed. 58 15206
[9] Wan C L, Tian R M, Kondou M, Yang R, Zong P G and Koumoto K 2017 Nat. Commun. 8 1024
[10] Wu Z H, Xie H Q, Zhai Y B, Gan L H and Liu J 2015 Chin. Phys. B 24 034402
[11] Xu Q, Qu S Y, Ming C, Qiu P F, Yao Q, Zhu C X, Wei T R, He J, Shi X and Chen L D 2020 Energy Environ. Sci. 13 511
[12] Lu Y, Qiu Y, Cai K F, Ding Y F, Wang M D, Jiang C, Yao Q, Huang C J, Chen L D and He J Q 2020 Energy Environ. Sci. 13 1240
[13] Ferhat M and Nagao J 2000 J. Appl. Phys. 88 813
[14] Jiang C, Ding Y F, Cai K F, Tong L, Lu Y, Zhao W Y and Wei P 2020 ACS Appl. Mater. Interfaces 12 9646
[16] Wang Y, Liu G F, Sheng M, Yu C and Deng Y 2019 J. Mater. Chem. A 7 1718
[17] Biswas K, Zhao L D and Kanatzidis M G 2012 Adv. Energy Mater. 2 634
[18] Ge Z H and Nolas G S 2014 Cryst. Growth Des. 14 533
[19] Wang Y, Zhang S M and Deng Y 2016 J. Mater. Chem. A 4 3554
[20] Wang Y, Yu C, Sheng M, Song S L and Deng Y 2018 Adv. Mater. Interfaces 5 1701168
[21] Yao Q, Wang Q, Wang L M and Chen L D 2014 Energy Environ. Sci. 7 3801
[22] Xiao J, Yang W Y and Li Q 2017 Appl. Catal. B 218 111
[23] Jupnik H 1941 Phys. Rev. 60 884
[24] Han D, Du M H, Dai C M, Sun D Y and Chen S Y 2017 J. Mater. Chem. A 5 6200
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[3] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[4] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[5] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[6] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[7] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[8] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[9] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[10] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[11] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
[12] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[13] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[14] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
[15] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
No Suggested Reading articles found!