Special Issue:
SPECIAL TOPIC — Organic and hybrid thermoelectrics
|
TOPICAL REVIEW—Organic and hybrid thermoelectrics |
Prev
Next
|
|
|
Recent progress in design of conductive polymers to improve the thermoelectric performance |
Zhen Xu (徐真)1,2, Hui Li (李慧)1,2,†, and Lidong Chen(陈立东)1,2 |
1 State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Organic semiconductors, especially polymer semiconductors, have attracted extensive attention as organic thermoelectric materials due to their capabilities for flexibility, low-cost fabrication, solution processability and low thermal conductivity. However, it is challenging to obtain high-performance organic thermoelectric materials because of the low intrinsic carrier concentration of organic semiconductors. The main method to control the carrier concentration of polymers is the chemical doping process by charge transfer between polymer and dopant. Therefore, the deep understanding of doping mechanisms from the point view of chemical structure has been highly desired to overcome the bottlenecks in polymeric thermoelectrics. In this contribution, we will briefly review the recently emerging progress for discovering the structure-property relationship of organic thermoelectric materials with high performance. Highlights include some achievements about doping strategies to effectively modulate the carrier concentration, the design rules of building blocks and side chains to enhance charge transport and improve the doping efficiency. Finally, we will give our viewpoints on the challenges and opportunities in the field of polymer thermoelectric materials.
|
Received: 30 July 2021
Revised: 26 August 2021
Accepted manuscript online: 01 September 2021
|
PACS:
|
82.35.-x
|
(Polymers: properties; reactions; polymerization)
|
|
36.20.-r
|
(Macromolecules and polymer molecules)
|
|
42.70.Jk
|
(Polymers and organics)
|
|
64.70.km
|
(Polymers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21905294) and the Shanghai Sailing Program. |
Corresponding Authors:
Hui Li
E-mail: lihui889@mail.sic.ac.cn
|
Cite this article:
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东) Recent progress in design of conductive polymers to improve the thermoelectric performance 2022 Chin. Phys. B 31 028203
|
[1] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554 [2] Harman T C, Taylor P J, Walsh M P and Laforge B E 2002 Science 297 2229 [3] Ding T, Chan K H, Zhou Y, Wang X Q, Cheng Y, Li T and Ho G W 2020 Nat. Commun. 11 6006 [4] Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K and Heeger A J 1977 J. Chem. Soc., Chem. Commun. 16 578 [5] Li H, Shi W, Song J, Jang H J, Dailey J, Yu J and Katz H E 2018 Chem. Rev. 119 3 [6] Huang W, Besar K, Lecover R, Rule A M, Breysse P N and Katz H E 2012 J. Am. Chem. Soc. 134 14650 [7] Kang Y H, Ko S J, Lee M H, Lee Y K and Song Y C 2020 Nano Energy 82 105681 [8] Yamamoto, Jun, Furukawa and Yukio 2015 J. Phys. Chem. B 119 4788 [9] Lüssem B, Keum C M, Kasemann D, Naab B, Bao Z and Leo K 2016 Chem. Rev. 116 13714 [10] Kim G H, Shao L, Zhang K and Pipe K P 2013 Nat. Mater. 12 719 [11] Gao, Weiying, Kahn and Antoine 2001 Appl. Phys. Lett. 79 4040 [12] Kulkarni C, van Son M H C, Di Nuzzo D, Meskers S C J, Palmans A R A and Meijer E W 2019 Chem. Mater. 31 6633 [13] Kiefer D, Kroon R, Hofmann A I, Sun H, Liu X, Giovannitti A, Stegerer D, Cano A, Hynynen J, Yu L, Zhang Y, Nai D, Harrelson T F, Sommer M, Moulé A J, Kemerink M, Marder S R, McCulloch I, Fahlman M, Fabiano S and Müller C 2019 Nat. Mater. 18 149 [14] Aziz E F, Vollmer A, Eisebitt S, Eberhardt W and Koch N 2010 Adv. Mater. 19 3257 [15] Méndez H, Heimel G, Opitz A, Sauer K, Barkowski P, Oehzelt M, Soeda J, Okamoto T, Takeya J, Arlin J B, Balandier J Y, Geerts Y, Koch N and Salzmann I 2013 Angew. Chem. Int. Ed. 52 7751[16] Pahner P, Kleemann H, Burtone L, Tietze M L, Fischer J, Leo K and Lussem B 2013 Phys. Rev. B 88 195205[17] Salzmann I, Heimel G, Duhm S, Oehzelt M, Pingel P, George B M, Schnegg A, Lips K, Blum R P, Vollmer A and Koch N 2012 Phys. Rev. Lett. 108 035502[18] Watts K E, Neelamraju B, Ratcliff E L and Pemberton J E 2019 Chem. Mater. 31 6986[19] Stanfield D A, Wu Y, Tolbert S H and Schwartz B J 2021 Chem. Mater. 33 2343[20] Robert B, Felipe F G J, Kosala W, Eleni P, Daniela G, Xianjie L, Roudabeh V, Zozoulenko I V and Xavier C 2018 J. Mater. Chem. A 6 21304[21] Endrdi B, Mellar J, Gingl Z, Visy C and Janaky C 2014 Rsc Advances 4 55328[22] Wu L, Li H, Chai H, Xu Q, Chen Y and Chen L 2021 ACS Applied Electronic Materials 3 1252[23] Zheng W, Min Y, M Acd Iarmid A G, Angelopoulos M, Liao Y H and Epstein A J 1997 Synthetic Metals 84 109[24] Duong D T, Wang C, Antono E, Toney M F and Salleo A 2013 Organic Electronics 14 1330[25] Tolbert, Sarah H, Scholes, Tyler D, Hao, Schwartz, Benjamin J, Yee, Patrick Y and Lindemuth 2015 J. Phys. Chem. Lett. 6 4786[26] Zhang G Y, Huber R C, Ferreira A S, Boyd S D, Luscombe C K, Tolbert S H and Schwartz B J 2014 J. Phys. Chem. C 118 18424[27] van Franeker J J, Kouijzer S, Lou X, Turbiez M, Wienk M M and Janssen R A J 2015 Adv. Energy Mater. 5 1500464[28] Ferreira A S, Aguirre J C, Subramaniyan S, Jenekhe S A, Tolbert S H and Schwartz B J 2016 J. Phys. Chem. C 120 22115[29] Fontana M T, Stanfield D A, Scholes D T, Winchell K J and Schwartz B J 2019 J. Phys. Chem. C 123 22711[30] Yoon S E, Kang Y, Jeon G G, Jeon D, Lee S Y, Ko S J, Kim T, Seo H, Kim B G and Kim J H 2020 Adv. Funct. Mater. 30 2004598 [31] Yamashita Y, Tsurumi J, Ohno M, Fujimoto R, Kumagai S, Kurosawa T, Okamoto T, Takeya J and Watanabe S 2019 Nature 572 634 [32] Murrey T L, Riley M A, Gonel G, Antonio D D, Filardi L, Shevchenko N, Mascal M and Moulé A J 2021 J. Phys. Chem. Lett. 12 1284 [33] Karpov Y, Erdmann T, Raguzin I, Al-Hussein M, Binner M, Lappan U, Stamm M, Gerasimov K L, Beryozkina T, Bakulev V, Anokhin D V, Ivanov D A, Günther F, Gemming S, Seifert G, Voit B, Di Pietro R and Kiriy A 2016 Adv. Mater. 28 6003 [34] Li G, Zhu R and Yang Y 2012 Nat. Photon. 6 153 [35] Kim A, Lee J H, Kim H J, Choi S, Kim Y U, Park C G, Jeong C H, Cho M J and Choi D H 2018 Synthetic Metals 236 36 [36] Heeney M, Zhang W, Crouch D J, Chabinyc M L, Gordeyev S, Hamilton R, Higgins S J, McCulloch I, Skabara P J, Sparrowe D and Tierney S 2007 Chemical Communications 2007 5061 [37] Gregory S A, Menon A K, Ye S, Seferos D S, Reynolds J R and Yee S K 2018 Adv. Energy Mater. 8 1802419 [38] Scholes D T, Yee P Y, Mckeown G R, Li S, Kang H, Lindemuth J R, Xia X, King S C, Seferos D S and Tolbert S H 2018 Chem. Mater. 31 73 [39] Bubnova O, Berggren M and Crispin X 2012 J. Am. Chem. Soc. 134 16456 [40] Fan Z, Li P, Du D and Ouyang J 2017 Adv. Energy Mater. 7 1602116 [41] Patel S N, Glaudell A M, Peterson K A, Thomas E M and Chabinyc M L 2017 Science Advances 3 1700434 [42] Zhang Q, Sun Y M, Xu W and Zhu D B 2012 Energy & Environmental Science 5 9639 [43] Jung I H, Hong C T, Lee U H, Kang Y H, Jang K S and Cho S Y 2017 Scientific Reports 7 44704 [44] Ding J, Liu Z, Zhao W, Jin W, Xiang L, Wang Z, Zeng Y, Zou Y, Zhang F and Yi Y 2019 Angewandte Chemie 131 19170 [45] Joo Y, Huang L, Eedugurala N, London A E, Kumar A, Wong B M, Boudouris B W and Azoulay J D 2018 Macromolecules 51 3886 [46] Dexter Tam T L, Ng C K, Lim S L, Yildirim E, Ko J, Leong W L, Yang S W and Xu J 2019 Chem. Mater. 31 8543 [47] Park J, Lee Y, Kim M, Kim Y, Tripathi A, Kwon Y W, Kwak J and Woo H Y 2020 ACS Appl. Mater. Interfaces 12 1110 [48] Tam T L D, Wu G, Chien S W, Lim S F V, Yang S W and Xu J 2020 ACS Materials Letters 2 147 [49] Suh E H, Jeong Y J, Oh J G, Lee K, Jung J, Kang Y S and Jang J 2019 Nano Energy 58 585 [50] Kroon R, Kiefer D, Stegerer D, Yu L, Sommer M and Müller C 2017 Adv. Mater. 29 1700930 [51] Lee J, Kim J, Nguyen T L, Kim M, Park J, Lee Y, Hwang S, Kwon Y W, Kwak J and Woo H Y 2018 Macromolecules 51 3360 [52] Li H, Song J, Xiao J, Wu L, Katz H E and Chen L 2020 Adv. Funct. Mater. 30 2004378 [53] Goel M, Heinrich C D, Krauss G and Thelakkat M 2019 Macromolecular Rapid Communications 40 1800915 [54] Karpov Y, Erdmann T, Stamm M, Lappan U, Guskova O, Malanin M, Raguzin I, Beryozkina T, Bakulev V and Günther F 2017 Macromolecules 50 914 [55] Zhong F, Yin X, Chen Z, Gao C and Wang L 2020 ACS Appl. Mater. Interfaces 12 26276 [56] Li B, Li X, Yang F, Chen Y, Mao X, Wan S, Xin H, Yan S, Wang M, Gao C and Wang L 2021 ACS Appl. Energy Mater. 4 4662 [57] Zuo G, Liu X, Fahlman M and Kemerink M 2018 Adv. Funct. Mater. 28 1703280 [58] Han J, Fan H, Zhang Q, Hu Q, Russell T P and Katz H E 2021 Adv. Funct. Mater. 31 2005901 [59] Lu Y, Yu Z D, Zhang R Z, Yao Z F, You H Y, Jiang L, Un H I, Dong B W, Xiong M, Wang J Y and Pei J 2019 Angew. Chem. Int. Ed. 58 11390 [60] Kluge R M, Saxena N, Chen W, Körstgens V, Schwartzkopf M, Zhong Q, Roth S V and Müller-Buschbaum P 2020 Adv. Funct. Mater. 30 2003092 [61] Han J, Ganley C, Hu Q, Zhao X, Clancy P, Russell T P and Katz H E 2021 Adv. Funct. Mater. 31 2010567 [62] Shi K, Zhang F, Di C A, Yan T W, Zou Y, Zhou X, Zhu D, Wang J Y and Pei J 2015 J. Am. Chem. Soc. 137 6979 [63] Xiong M, Yan X Y, Li J T, Zhang S, Cao Z Q, Prine N, Lu Y, Wang J Y, Gu X D and Lei T 2021 Angewandte Chemie 133 8270 [64] Lu Y, Yu Z D, Un H I, Yao Z F, You H Y, Jin W, Li L, Wang Z Y, Dong B W, Barlow S, Longhi E, Di C a, Zhu D, Wang J Y, Silva C, Marder S R and Pei J 2021 Adv. Mater. 33 2005946 [65] Un H I, Gregory S A, Mohapatra S K, Xiong M, Longhi E, Lu Y, Rigin S, Jhulki S, Yang C Y, Timofeeva T V, Wang J Y, Yee S K, Barlow S, Marder S R and Pei J 2019 Adv. Energy Mater. 9 1900817 [66] Lu Y, Yu Z D, Liu Y, Ding Y F, Yang C Y, Yao Z F, Wang Z Y, You H Y, Cheng X F, Tang B, Wang J Y and Pei J 2020 J. Am. Chem. Soc. 142 15340 [67] Dong C, Deng S, Meng B, Liu J and Wang L 2021 Angew. Chem. Int. Ed. 60 16184 [68] Feng K, Guo H, Wang J, Shi Y, Wu Z, Su M, Zhang X, Son J H, Woo H Y and Guo X 2021 J. Am. Chem. Soc. 143 1539 [69] Liu J, Shi Y, Dong J, Nugraha M I, Qiu X, Su M, Chiechi R C, Baran D, Portale G, Guo X and Koster L J A 2019 ACS Energy Letters 4 1556 [70] Wang Y and Takimiya K 2020 Adv. Mater. 32 2002060 [71] Liu J, Ye G, Potgieser H G O, Koopmans M, Sami S, Nugraha M I, Villalva D R, Sun H, Dong J, Yang X, Qiu X, Yao C, Portale G, Fabiano S, Anthopoulos T D, Baran D, Havenith R W A, Chiechi R C and Koster L J A 2021 Adv. Mater. 33 2006694 [72] Liang A, Zhou X, Zhou W, Wan T, Wang L, Pan C and Wang L 2017 Macromolecular Rapid Communications 38 1600817 [73] Liu J, Qiu L, Alessandri R, Qiu X, Portale G, Dong J, Talsma W, Ye G, Sengrian A A, Souza P C T, Loi M A, Chiechi R C, Marrink S J, Hummelen J C and Koster L J A 2018 Adv. Mater. 30 1704630 [74] Li H, Decoster M E, Ming C, Wang M and Katz H E 2019 Macromolecules 52 9804 [75] Li H, Decoster M E, Ireland R M, Song J, Hopkins P E and Katz H E 2017 J. Am. Chem. Soc. 139 11149 [76] Yoon S E, Shin S J, Lee S Y, Jeon G G, Kang H, Seo H, Zheng J and Kim J H 2020 ACS Applied Polymer Materials 2 2729 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|