Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027303    DOI: 10.1088/1674-1056/ac3502
Special Issue: SPECIAL TOPIC — Organic and hybrid thermoelectrics
SPECIAL TOPIC—Organic and hybrid thermoelectrics Prev   Next  

Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications

Fu-Wei Liu(刘福伟)1,†, Fei Zhong(钟飞)2,†, Shi-Chao Wang(王世超)2, Wen-He Xie(谢文合)1, Xue Chen(陈雪)1, Ya-Ge Hu(胡亚歌)1, Yu-Ying Ge(葛钰莹)1, Yuan Gao(郜源)1, Lei Wang(王雷)2,‡, and Zi-Qi Liang(梁子骐)3,§
1 College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China;
2 Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
3 Department of Materials Science, Fudan University, Shanghai 200433, China
Abstract  High-performance organic composite thermoelectric (TE) materials are considered as a promising alternative for harvesting heat energy. Herein, composite films of poly (3,4-ethyienedioxythiophene):poly(styrene sulfonate)/single-walled carbon nanotubes (PEDOT:PSS/SWCNTs) were fabricated by utilizing a convenient solution mixing method. Thereafter, the as-prepared hybrid films were treated using sulfuric acid (H2SO4) to further optimize the TE performance. Film morphological studies revealed that the sulfuric acid treated PEDOT:PSS/SWCNTs composite samples all possessed porous structures. Due to the successful fabrication of highly conductive networks, the porous nano-architecture also exhibited much more excellent TE properties when compared with the dense structure of the pristine samples. For the post-treated sample, a high power factor of 156.43 μW· m-1· K-2 can be achieved by adjusting the content of CNTs, which is approximately 3 orders of magnitude higher than that of the corresponding untreated samples (0.23 μW· m-1· K-2). Besides, the obtained films also showed excellent mechanical flexibility, owing to the porous nanostructure and the strong π-π interactions between the two components. This work indicates that the H2SO4 treatment could be a promising strategy for fabricating highly-flexible and porous PEDOT:PSS/SWCNTs films with high TE performances.
Keywords:  porous film      thermoelectric properties      flexibility  
Received:  31 August 2021      Revised:  14 October 2021      Accepted manuscript online:  01 November 2021
PACS:  73.50.Lw (Thermoelectric effects)  
  88.30.rh (Carbon nanotubes)  
  78.67.Rb (Nanoporous materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2004174, 51773118, and 51673044).
Corresponding Authors:  Lei Wang, Zi-Qi Liang     E-mail:;

Cite this article: 

Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐) Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications 2022 Chin. Phys. B 31 027303

[1] Zhang Q, Sun Y, Xu W and Zhu D 2014 Adv. Mater. 26 6829
[2] Tang J, Chen R, Chen L, Bazan G C and Liang Z 2020 J. Mater. Chem. A 8 9797
[3] Zhang Y, Chen S, Zhang H, Ding X, Fu P and Du F 2021 Compos. Commun. 27 100883
[4] Li C, He W, Wang D and Zhao L D 2021 Chin. Phys. B 30 067101
[5] Xia X G, Zhang Q, Zhou W B, Xiao Z J, Xi W, Wang Y C and Zhou W Y 2021 Chin. Phys. B 30 078801
[6] Gao C and Chen G 2016 Compos. Sci. Technol. 124 52
[7] Wang L, Pan C, Chen Z, Zhou W, Gao C and Wang L 2018 ACS Appl. Energ. Mater. 1 5075
[8] Tang J, Chen Y, McCuskey S R, Chen L, Bazan G C and Liang Z 2019 Adv. Electron. Mater. 5 1800943
[9] Li Y, Du Y, Dou Y, Cai K and Xu J 2017 Synthetic Met. 226 119
[10] Wang L, Yao Q, Xiao J, Zeng K, Qu S, Shi W, Wang Q and Chen L 2016 Chem. Asian. J 11 1804
[11] Wang H, Yi S i and Yu C 2016 Polymer 97 487
[12] Zhou X, Pan C, Liang A, Wang L and Wong W Y 2017 Compos. Sci. Technol. 145 40
[13] Kishi N, Kondo Y, Kunieda H, Hibi S and Sawada Y 2017 J. Mater. Sci. Mater. Electron. 29 4030
[14] Zhu Z, Liu C, Jiang F, Xu J and Liu E 2017 Synthetic Met. 225 31
[15] Ouyang J, Xu Q, Chu C W, Yang Y, Li G and Shinar J 2004 Polymer 45 8443
[16] Ouyang J, Chu C W, Chen F C, Xu Q and Yang Y 2005 Adv. Funct. Mater. 15 203
[17] Badre C, Marquant L, Alsayed A M and Hough L A 2012 Adv. Funct. Mater. 22 2723
[18] Liu C, Xu J, Lu B, Yue R and Kong F 2012 J. Electron. Mater. 41 639
[19] Xia Y and Ouyang J 2009 Macromolecules 42 4141
[20] Fan Z, Du D, Yu Z, Li P, Xia Y and Ouyang J 2016 ACS Appl. Mater. Interfaces 8 23204
[21] Lee S H, Park H, Kim S, Son W, Cheong I W and Kim J H 2014 J. Mater. Chem. A 2 7288
[22] Kim G H, Shao L, Zhang K and Pipe K P 2013 Nat. Mater. 12 719
[23] Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, Van Haesendonck C, Van der Auweraer M, Salaneck W R and Berggren M 2006 Chem. Mater. 18 4354
[24] Takano T, Masunaga H, Fujiwara A, Okuzaki H and Sasaki T 2012 Macromolecules 45 3859
[25] Bießmann L, Saxena N, Hohn N, Hossain M A, Veinot J G C and Müller-Buschbaum P 2019 Adv. Electron. Mater. 5 1800654
[26] Bae E J, Kang Y H, Jang K S and Cho S Y 2016 Sci. Rep. 6 18805
[27] Liu X, Du Y, Meng Q, Dou Y, Jin M, Xu J and Shen S Z 2020 Adv. Eng. Mater. 22 2000605
[28] Zhang Y, Liu S, Koh J J and He C 2021 J. Materiomics 7 34
[29] Zhang Y, Zhang Q and Chen G 2020 Carbon Energy 2 408
[30] Kim D, Kim Y, Choi K, Grunlan J C and Yu C 2010 ACS Nano 4 513
[31] Song H, Liu C, Xu J, Jiang Q and Shi H 2013 RSC Adv. 3 22065
[32] Zhang Z, Chen G, Wang H and Li X 2015 Chem. Asian. J. 10 149
[33] Jiang Q, Lan X, Liu C, Shi H, Zhu Z, Zhao F, Xu J and Jiang F 2018 Mater. Chem. Front. 2 679
[34] Zhang L, Harima Y and Imae I 2017 Org. Electron. 51 304
[35] Lee W, Kang Y H, Lee J Y, Jang K S and Cho S Y 2016 RSC Adv. 6 53339
[36] Du Y, Shi Y, Meng Q and Shen S Z 2020 Synthetic Met. 261 116318
[37] Wei S, Huang X, Deng L, Yan Z C and Chen G 2021 Compos. Sci. Technol. 208 108759
[38] Jia F, Wu R, Liu C, Lan J, Lin Y H and Yang X 2019 ACS Sustainable Chem. Eng. 7 12591
[39] Sun X, Wei Y, Li J, Zhao J, Zhao L and Li Q 2017 Sci. China Mater. 60 159
[40] Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J and Lee K 2014 Adv. Mater. 26 2268
[41] Farah A A, Rutledge S A, Schaarschmidt A, Lai R, Freedman J P and Helmy A S 2012 J. Appl. Phys. 112 113709
[42] Fan W, Guo C Y and Chen G 2018 J. Mater. Chem. A 6 12275
[43] Yoo D, Kim J, Lee S H, Cho W, Choi H H, Kim F S and Kim J H 2015 J. Mater. Chem. A 3 6526
[44] Łapkowski and Proń A 2000 Synthetic Met. 110 79
[45] Garreau S, Louarn G, Buisson J P, Froyer G and Lefrant S 1999 Macromolecules 32 6807
[46] Ely F, Matsumoto A, Zoetebier B, Peressinotto V S, Hirata M K, de Sousa D A and Maciel R 2014 Org. Electron. 15 1062
[47] Mahakul P C, Sa K, Das B, Subramaniam B V R S, Saha S, Moharana B, Raiguru J, Dash S, Mukherjee J and Mahanandia P 2017 J. Mater. Sci. 52 5696
[48] Kang K S, Lim H K, Cho K Y, Han K J and Kim J 2008 J. Phys. D:Appl. Phys. 41 012003
[49] Kim N, Lee B H, Choi D, Kim G, Kim H, Kim J R, Lee J, Kahng Y H and Lee K 2012 Phys. Rev. Lett. 109 106405
[50] Wang J, Cai K and Shen S 2014 Org. Electron. 15 3087
[51] Suchand Sangeeth C S, Jaiswal M and Menon R 2009 J. Phys. Condens. Matter 21 072101
[52] Bubnova O and Crispin X 2012 Energ. Environ. Sci. 5 9345
[53] Yang J, Yip H L and Jen A K Y 2013 Adv. Energ. Mater. 3 549
[54] See K C, Feser J P, Chen C E, Majumdar A, Urban J J and Segalman R A 2010 Nano Lett. 10 4664
[55] Song H, Qiu Y, Wang Y, Cai K, Li D, Deng Y and He J 2017 Compos. Sci. Technol. 153 71
[56] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[57] Meng C, Liu C and Fan S 2010 Adv. Mater. 22 535
[58] Moriarty G P, Wheeler J N, Yu C and Grunlan J C 2012 Carbon 50 885
[59] Wang J, Cai K, Yin J and Shen S 2017 Synthetic Met. 224 27
[60] Yu C, Choi K, Yin L and Grunlan J C 2011 ACS Nano 5 7885
[61] Kim D, Kim Y, Choi K, Grunlan J C and Yu C 2010 ACS Nano 4 513
[62] Moriarty G P, De S, King P J, Khan U, Via M, King J A, Coleman J N and Grunlan J C 2013 J. Polym. Sci. Pol. Phys. 51 119
[63] Jiang F X, Xu J K, Lu B Y, Xie Y, Huang R J and Li L F 2008 Chin. Phys. Lett. 25 2202
[64] Bounioux C, Díaz-Chao P, Campoy-Quiles M, Martín-González M S, Goñi A R, Yerushalmi-Rozen R and Müller C 2013 Energy Environ. Sci. 6 918
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[3] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[6] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[7] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[8] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[9] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[10] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[11] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[12] Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution
Di Tang(唐迪), Hai Zhu(朱海), Wei Yuan(袁巍), Zhongyong Fan(范忠勇), Mingxia Lei(雷鸣霞). Chin. Phys. B, 2019, 28(7): 074703.
[13] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[14] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[15] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
No Suggested Reading articles found!