|
|
Dynamical learning of non-Markovian quantum dynamics |
Jintao Yang(杨锦涛)1,2,†, Junpeng Cao(曹俊鹏)1,2,3,4,‡, and Wen-Li Yang(杨文力)4,5,6,7,§ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China; 5 Institute of Modern Physics, Northwest University, Xi'an 710127, China; 6 School of Physical Sciences, Northwest University, Xi'an 710127, China; 7 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China |
|
|
Abstract We study the non-Markovian dynamics of an open quantum system with machine learning. The observable physical quantities and their evolutions are generated by using the neural network. After the pre-training is completed, we fix the weights in the subsequent processes thus do not need the further gradient feedback. We find that the dynamical properties of physical quantities obtained by the dynamical learning are better than those obtained by the learning of Hamiltonian and time evolution operator. The dynamical learning can be applied to other quantum many-body systems, non-equilibrium statistics and random processes.
|
Received: 03 June 2021
Revised: 19 July 2021
Accepted manuscript online: 08 September 2021
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
47.10.Fg
|
(Dynamical systems methods)
|
|
02.50.Ga
|
(Markov processes)
|
|
Fund: Project supported by the National Program for Basic Research of the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300600 and 2016YFA0302104), the National Natural Science Foundation of China (Grant Nos. 12074410, 12047502, 11934015, 11975183, 11947301, 11774397, 11775178, and 11775177), the Major Basic Research Program of the Natural Science of Shaanxi Province, China (Grant No. 2017ZDJC-32), the Australian Research Council (Grant No. DP 190101529), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000), and the Double First-Class University Construction Project of Northwest University. |
Corresponding Authors:
Jintao Yang, Junpeng Cao, and Wen-Li Yang
E-mail: jintao_yang@iphy.ac.cn;junpengcao@iphy.ac.cn;wlyang@nwu.edu.cn
|
Cite this article:
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力) Dynamical learning of non-Markovian quantum dynamics 2022 Chin. Phys. B 31 010314
|
[1] Ohtsuki T and Ohtsuki T 2016 J. Phys. Soc. Jpn. 85 123706 [2] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 [3] Zhang Y and Kim E A 2017 Phys. Rev. Lett. 118 216401 [4] Ch'ng K, Carrasquilla J, Melko R G and Khatami E 2017 Phys. Rev. X 7 031038 [5] Beach M J S, Golubeva A and Melko R G 2018 Phys. Rev. B 97 045207 [6] Rem B S, Kaming N, Tarnowski M, Asteria L, Flaschner N, Becker C, Sengstock K and Weitenberg C 2019 Nat. Phys. 15 917 [7] Huembeli P, Dauphin A and Wittek P 2018 Phys. Rev. B 97 134109 [8] Casert C, Vieijra T, Nys J and Ryckebusch J 2019 Phys. Rev. E 99 023304 [9] Zhang W, Liu J and Wei T C 2019 Phys. Rev. E 99 032142 [10] Huembeli P, Dauphin A, Wittek P and Gogolin C 2019 Phys. Rev. B 99 104106 [11] Kharkov Y A, Sotskov V E, Karazeev A A, Kiktenko E O and Fedorov A K 2020 Phys. Rev. B 101 064406 [12] Sun L W, Li H, Wang P J, Gao H B and Luo M B 2019 Acta Phys. Sin. 68 200701 (in Chinese) [13] Su Z X, Kang Y Z, Zhang B F, Zhang Z Q and Jiang H 2019 Chin. Phys. B 28 117301 [14] Zhang P, Shen H and Zhai H 2018 Phys. Rev. Lett. 120 066401 [15] Sun N, Yi J, Zhang P, Shen H and Zhai H 2018 Phys. Rev. B 98 085402 [16] Carvalho D, Garcia-Martinez N A, Lado J L and Fernandez-Rossier J 2018 Phys. Rev. B 97 115453 [17] Mano T and Ohtsuki T 2019 J. Phys. Soc. Jpn. 88 123704 [18] Ming Y, Lin C, Bartlett S D and Zhang W W 2019 npj Comput. Mater. 5 88 [19] Carleo G and Troyer M 2017 Science 355 602 [20] Deng D L, Li X and Das Sarma S 2017 Phys. Rev. X 7 021021 [21] Gao X and Duan L M 2017 Nat. Commun. 8 662 [22] Deng D L, Li X and Das Sarma S 2017 Phys. Rev. B 96 195145 [23] Nomura Y, Darmawan A S, Yamaji Y and Imada M 2017 Phys. Rev. B 96 205152 [24] Kaubruegger R, Pastori L and Budich J C 2018 Phys. Rev. B 97 195136 [25] Pastori L, Kaubruegger R and Budich J C 2019 Phys. Rev. B 99 165123 [26] Levine Y, Sharir O, Cohen N and Shashua A 2019 Phys. Rev. Lett. 122 065301 [27] Broecker P, Carrasquilla J, Melko R G and Trebst S 2017 Sci. Rep. 7 8823 [28] Bukov M, Day A G R, Sels D, Weinberg P, Polkovnikov A and Mehta P 2018 Phys. Rev. X 8 031086 [29] Shen H, Liu J and Fu L 2018 Phys. Rev. B 97 205140 [30] Torlai G and Melko R G 2017 Phys. Rev. Lett. 119 030501 [31] Fösel T, Tighineanu P, Weiss T and Marquardt F 2018 Phys. Rev. X 8 031084 [32] Baireuther P, O'Brien T E, Tarasinski B and Beenakker C 2018 Quantum 2 48 [33] Andreasson P, Johansson J, Liljestrand S and Granath M 2019 Quantum 3 183 [34] Yuan L, Yang X S and Wang B Z 2019 Acta Phys. Sin. 68 170503 (in Chinese) [35] Zhu Z J, Guo Y, Yang F, Xiao B J and Li J G 2019 Chin. Phys. B 28 125204 [36] Li P C, Wang H Y, Dai Q and Xiao H 2012 Acta Phys. Sin. 61 160303 (in Chinese) [37] Han J, Zhang Z, Zhang X and Zhou J 2020 Chin. Phys. B 29 110201 [38] Luchnikov I A, Vintskevich S V, Grigoriev D A and Filippov S N 2020 Phys. Rev. Lett. 124 140502 [39] Perich M G, Gallego J A and Miller L E 2018 Neuron 100 964 [40] Klos C, Kossio Y F K, Goedeke S, Gilra A and Memmesheimer R M 2020 Phys. Rev. Lett. 125 088103 [41] Sussillo D and Abbott L F 2009 Neuron 63 544 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|