Special Issue:
SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials
|
SPECIAL TOPIC—Superconductivity in vanadium-based kagome materials |
Prev
Next
|
|
|
A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice |
Ningning Wang(王宁宁)1,2, Yuhao Gu(顾雨豪)1,2, M. A. McGuire3, Jiaqiang Yan3, Lifen Shi(石利粉)1,2, Qi Cui(崔琦)1,2, Keyu Chen(陈科宇)1,2, Yuxin Wang(王郁欣)1,2, Hua Zhang(张华)1,2, Huaixin Yang(杨槐馨)1,2, Xiaoli Dong(董晓莉)1,2, Kun Jiang(蒋坤)1,2, Jiangping Hu(胡江平)1,2, Bosen Wang(王铂森)1,2, Jianping Sun(孙建平)1,2, and Jinguang Cheng(程金光)1,2,† |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA |
|
|
Abstract Recently, transition-metal-based kagome metals have aroused much research interest as a novel platform to explore exotic topological quantum phenomena. Here we report on the synthesis, structure, and physical properties of a bilayer kagome lattice compound V3Sb2. The polycrystalline V3Sb2 samples were synthesized by conventional solid-state-reaction method in a sealed quartz tube at temperatures below 850 ℃. Measurements of magnetic susceptibility and resistivity revealed consistently a density-wave-like transition at Tdw ≈ 160 K with a large thermal hysteresis, even though some sample-dependent behaviors were observed presumably due to the different preparation conditions. Upon cooling through Tdw, no strong anomaly in lattice parameters and no indication of symmetry lowering were detected in powder x-ray diffraction measurements. This transition can be suppressed completely by applying hydrostatic pressures of about 1.8 GPa, around which no sign of superconductivity was observed down to 1.5 K. Specific-heat measurements revealed a relatively large Sommerfeld coefficient γ = 18.5 mJ·mol-1·K-2, confirming the metallic ground state with moderate electronic correlations. Density functional theory calculations indicate that V3Sb2 shows a non-trivial topological crystalline property. Thus, our study makes V3Sb2 a new candidate of metallic kagome compound to study the interplay between density-wave-order, nontrivial band topology, and possible superconductivity.
|
Received: 29 October 2021
Revised: 01 December 2021
Accepted manuscript online: 11 December 2021
|
PACS:
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
71.20.Be
|
(Transition metals and alloys)
|
|
74.40.Kb
|
(Quantum critical phenomena)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
Fund: This work is supported by the National Key R&D Program of China (Grant Nos. 2018YFA0305700 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 12025408, 11874400, 11834016, 11921004, 11888101, and 11904391), the Beijing Natural Science Foundation, China (Grant No. Z190008), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of Chinese Academy of Sciences (CAS) (Grant Nos. XDB25000000, XDB33000000 and QYZDBSSW-SLH013), and the CAS Interdisciplinary Innovation Team (Grant No. JCTD-201-01). Work at Oak Ridge National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. |
Corresponding Authors:
Jinguang Cheng
E-mail: jgcheng@iphy.ac.cn
|
Cite this article:
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光) A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice 2022 Chin. Phys. B 31 017106
|
[1] Guo H M and Franz M 2009 Phys. Rev. B 80 113102 [2] Balents L 2010 Nature 464 199 [3] Yan S, Huse D A and White S R 2011 Science 332 1173 [4] Depenbrock S, McCulloch I P and Schollwoeck U 2012 Phys. Rev. Lett. 109 067201 [5] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 [6] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Suess V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [7] Ye L, Kang M, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [8] Yin J X, Zhang S S, Li H, Jiang K, Chang G Q, Zhang B J, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z Q, Jia S, Wang W H and Hasan M Z 2018 Nature 562 91 [9] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004 [10] Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G and Comin R 2020 Nat. Mater. 19 163 [11] Liu Z H, Li M, Wang Q, Wang G W, Wen C H P, Jiang K, Lu X L, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z Q, Yin Z P, Lei H C and Wang S C 2020 Nat. Commun. 11 4002 [12] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [13] Yin J X, Ma W L, Cochran T A, Xu X T, Zhang S S, Tien H J, Shumiya N, Cheng G M, Jiang K, Lian B, Song Z, Chang G Q, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H B, Lin H, Neupert T, Wang Z Q, Yao N, Chang T R, Jia S and Hasan M Z 2020 Nature 583 533 [14] Shores M P, Nytko E A, Bartlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 [15] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204 [16] Ran Y, Hermele M, Lee P A and Wen X G 2007 Phys. Rev. Lett. 98 117205 [17] Rigol M and Singh R R P 2007 Phys. Rev. Lett. 98 207204 [18] Punk M, Chowdhury D and Sachdev S 2014 Nat. Phys. 10 289 [19] Kelly Z A, Gallagher M J and McQueen T M 2016 Phys. Rev. X 6 041007 [20] O'Brien A, Pollmann F and Fulde P 2010 Phys. Rev. B 81 235115 [21] Yu S L and Li J X 2012 Phys. Rev. B 85 144402 [22] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405 [23] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135 [24] Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R and Valenti R 2014 Nat. Commun. 5 4261 [25] Isakov S V, Wessel S, Melko R G, Sengupta K and Kim Y B 2006 Phys. Rev. Lett. 97 147202 [26] Guertler S 2014 Phys. Rev. B 90 081105 [27] Li H X, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X 11 031050 [28] Wang Z X, Wu Q, Yin Q W, Gong C S, Tu Z J, Lin T, Liu Q M, Shi L Y, Zhang S J, Wu D, Lei H C, Dong T and Wang N L 2021 Phys. Rev. B 104 165110 [29] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645 [30] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502 [31] Wang Q, Sun S S, Zhang X, Pang F and Lei H C 2016 Phys. Rev. B 94 075135 [32] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G and Zhang Z Y 2018 Phys. Rev. Lett. 121 096401 [33] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 4212 [34] Liu Z Y, Zhang T, Xu S X, Yang P T, Lei H C, Yu. S, Uwatoko Y, Wang B S, Wen H M, Sun J P and Cheng J G 2020 Phys. Rev. Mater. 4 044203 [35] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [36] Lin Z Y, Wang C Z, Wang P D, Yi S, Li L, Zhang Q, Wang Y, Wang Z Y, Huang H, Sun Y, Huang Y B, Shen D W, Feng D L, Sun Z, Cho J H, Zeng C G and Zhang Z Y 2020 Phys. Rev. B 102 155103 [37] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [38] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2020 Phys. Rev. Mater. 5 034801 [39] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403 [40] Yang S Y, Wang Y J, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, Smejkal L, Chen Y L, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003 [41] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q and Gao H J 2021 Nature 599 222 [42] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001 [43] Wang N N, Chen K Y, Yin Q W, Ma Y N N, Pan B Y, Yang X, Ji X Y, Wu S L, Shan P F, Xu S X, Tu Z J, Gong C S, Liu G T, Li G, Uwatoko Y, Dong X L, Lei H C, Sun J P and Cheng J G 2021 Phys. Rev. Research 3 043018 [44] Du F, Luo S S, Ortiz B R, Chen Y, Duan W Y, Zhang D T, Lu X, Wilson S D, Song Y and Yuan H Q 2021 Phys. Rev. B 103 L220504 [45] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z Q, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353 [46] Kenney E M, Ortiz B R, Wang C, Wilson S D and Graf M J 2021 J. Phys.: Condens. Matter 33 235801 [47] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026 [48] Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H X, Shi Y G, Yin Q W, Le H C, Zhan S S, Chang G Q, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Wilson S D and Hasan M Z 2021 Phys. Rev. B 104 035131 [49] Wang Q, Kong P F, Shi W J, Pei C Y, Wen C H P, Gao L L, Zhao Y, Yin Q W, Wu Y S, Li G, Lei H C, Li J, Chen Y L, Yan S C and Qi Y P 2021 Adv. Mater. 33 2102813 [50] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103 [51] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M X, Wang Z Q, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216 [52] Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G and Chen X L 2021 Chin. Phys. Lett. 38 057402 [53] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J and Xian Z Z 2021 Chin. Phys. Lett. 38 057403 [54] Mu C, Yin Q W, Tu Z J, Gong C S, Lei H C, Li Z and Luo J L 2021 Chin. Phys. Lett. 38 077402 [55] Failamani F, Broz P, Macció D, Puchegger S, Müller H, Salamakha L, Michor H, Grytsiv A, Saccone A, Bauer E, Giester G and Rogl P 2015 Intermetallics 65 94 [56]Degen T, Sadki M, Bron E, König U and Nénert G 2014 Powder Diffr. 29 S13 [57] Uwatoko Y, Todo S, Ueda K, Uchida A, Kosaka M, Mori N and Matsumoto T 2002 J. Phys.: Condens. Matter 14 11291 [58] Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15 [59] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [60] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396 [61] Fu L 2011 Phys. Rev. Lett. 106 106802 [62] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480 [63] Vergniory M G, Wieder B J, Elcoro L, Parkin S S P, Felser C, Bernevig B A and Regnault N 2021 arXiv: 2105.09954 [64] Disalvo F J and Waszczak J V 1980 Phys. Rev. B 22 4241 [65] Disalvo F J and Waszczak J V 1980 J. Phys. Chem. Solids 41 1311 [66] Boubeche M, Yu J, Chushan L, Huichao W, Zeng L Y, He Y, Wang X P, Su W Z, Wang M, Yao D X, Wang Z, Jun and Luo H X 2021 Chin. Phys. Lett. 38 037401 [67] Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402 [68] Boldrin D and Wills A S 2012 Adv. Cond. Matter. Phys. 2012 159 [69] Shi M Z, Yu F H, Yang Y, Meng F B, Lei B, Luo Y, Sun Z, He J F, Wang R, Wu T, Wang Z Y, Xiang Z J, Ying J J and Chen X H 2021 arXiv: 2110.09782} |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|