Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017106    DOI: 10.1088/1674-1056/ac4227
Special Issue: SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials
SPECIAL TOPIC—Superconductivity in vanadium-based kagome materials Prev   Next  

A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice

Ningning Wang(王宁宁)1,2, Yuhao Gu(顾雨豪)1,2, M. A. McGuire3, Jiaqiang Yan3, Lifen Shi(石利粉)1,2, Qi Cui(崔琦)1,2, Keyu Chen(陈科宇)1,2, Yuxin Wang(王郁欣)1,2, Hua Zhang(张华)1,2, Huaixin Yang(杨槐馨)1,2, Xiaoli Dong(董晓莉)1,2, Kun Jiang(蒋坤)1,2, Jiangping Hu(胡江平)1,2, Bosen Wang(王铂森)1,2, Jianping Sun(孙建平)1,2, and Jinguang Cheng(程金光)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Abstract  Recently, transition-metal-based kagome metals have aroused much research interest as a novel platform to explore exotic topological quantum phenomena. Here we report on the synthesis, structure, and physical properties of a bilayer kagome lattice compound V3Sb2. The polycrystalline V3Sb2 samples were synthesized by conventional solid-state-reaction method in a sealed quartz tube at temperatures below 850 ℃. Measurements of magnetic susceptibility and resistivity revealed consistently a density-wave-like transition at Tdw ≈ 160 K with a large thermal hysteresis, even though some sample-dependent behaviors were observed presumably due to the different preparation conditions. Upon cooling through Tdw, no strong anomaly in lattice parameters and no indication of symmetry lowering were detected in powder x-ray diffraction measurements. This transition can be suppressed completely by applying hydrostatic pressures of about 1.8 GPa, around which no sign of superconductivity was observed down to 1.5 K. Specific-heat measurements revealed a relatively large Sommerfeld coefficient γ = 18.5 mJ·mol-1·K-2, confirming the metallic ground state with moderate electronic correlations. Density functional theory calculations indicate that V3Sb2 shows a non-trivial topological crystalline property. Thus, our study makes V3Sb2 a new candidate of metallic kagome compound to study the interplay between density-wave-order, nontrivial band topology, and possible superconductivity.
Keywords:  V3Sb2      kagome metal      charge density wave      pressure effect  
Received:  29 October 2021      Revised:  01 December 2021      Accepted manuscript online:  11 December 2021
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  71.20.Be (Transition metals and alloys)  
  74.40.Kb (Quantum critical phenomena)  
  74.62.Fj (Effects of pressure)  
Fund: This work is supported by the National Key R&D Program of China (Grant Nos. 2018YFA0305700 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 12025408, 11874400, 11834016, 11921004, 11888101, and 11904391), the Beijing Natural Science Foundation, China (Grant No. Z190008), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of Chinese Academy of Sciences (CAS) (Grant Nos. XDB25000000, XDB33000000 and QYZDBSSW-SLH013), and the CAS Interdisciplinary Innovation Team (Grant No. JCTD-201-01). Work at Oak Ridge National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Corresponding Authors:  Jinguang Cheng     E-mail:  jgcheng@iphy.ac.cn

Cite this article: 

Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光) A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice 2022 Chin. Phys. B 31 017106

[1] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[2] Balents L 2010 Nature 464 199
[3] Yan S, Huse D A and White S R 2011 Science 332 1173
[4] Depenbrock S, McCulloch I P and Schollwoeck U 2012 Phys. Rev. Lett. 109 067201
[5] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[6] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Suess V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[7] Ye L, Kang M, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[8] Yin J X, Zhang S S, Li H, Jiang K, Chang G Q, Zhang B J, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z Q, Jia S, Wang W H and Hasan M Z 2018 Nature 562 91
[9] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004
[10] Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G and Comin R 2020 Nat. Mater. 19 163
[11] Liu Z H, Li M, Wang Q, Wang G W, Wen C H P, Jiang K, Lu X L, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z Q, Yin Z P, Lei H C and Wang S C 2020 Nat. Commun. 11 4002
[12] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[13] Yin J X, Ma W L, Cochran T A, Xu X T, Zhang S S, Tien H J, Shumiya N, Cheng G M, Jiang K, Lian B, Song Z, Chang G Q, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H B, Lin H, Neupert T, Wang Z Q, Yao N, Chang T R, Jia S and Hasan M Z 2020 Nature 583 533
[14] Shores M P, Nytko E A, Bartlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462
[15] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204
[16] Ran Y, Hermele M, Lee P A and Wen X G 2007 Phys. Rev. Lett. 98 117205
[17] Rigol M and Singh R R P 2007 Phys. Rev. Lett. 98 207204
[18] Punk M, Chowdhury D and Sachdev S 2014 Nat. Phys. 10 289
[19] Kelly Z A, Gallagher M J and McQueen T M 2016 Phys. Rev. X 6 041007
[20] O'Brien A, Pollmann F and Fulde P 2010 Phys. Rev. B 81 235115
[21] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[22] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405
[23] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[24] Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R and Valenti R 2014 Nat. Commun. 5 4261
[25] Isakov S V, Wessel S, Melko R G, Sengupta K and Kim Y B 2006 Phys. Rev. Lett. 97 147202
[26] Guertler S 2014 Phys. Rev. B 90 081105
[27] Li H X, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X 11 031050
[28] Wang Z X, Wu Q, Yin Q W, Gong C S, Tu Z J, Lin T, Liu Q M, Shi L Y, Zhang S J, Wu D, Lei H C, Dong T and Wang N L 2021 Phys. Rev. B 104 165110
[29] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645
[30] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502
[31] Wang Q, Sun S S, Zhang X, Pang F and Lei H C 2016 Phys. Rev. B 94 075135
[32] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G and Zhang Z Y 2018 Phys. Rev. Lett. 121 096401
[33] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 4212
[34] Liu Z Y, Zhang T, Xu S X, Yang P T, Lei H C, Yu. S, Uwatoko Y, Wang B S, Wen H M, Sun J P and Cheng J G 2020 Phys. Rev. Mater. 4 044203
[35] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[36] Lin Z Y, Wang C Z, Wang P D, Yi S, Li L, Zhang Q, Wang Y, Wang Z Y, Huang H, Sun Y, Huang Y B, Shen D W, Feng D L, Sun Z, Cho J H, Zeng C G and Zhang Z Y 2020 Phys. Rev. B 102 155103
[37] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[38] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2020 Phys. Rev. Mater. 5 034801
[39] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403
[40] Yang S Y, Wang Y J, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, Smejkal L, Chen Y L, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[41] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q and Gao H J 2021 Nature 599 222
[42] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[43] Wang N N, Chen K Y, Yin Q W, Ma Y N N, Pan B Y, Yang X, Ji X Y, Wu S L, Shan P F, Xu S X, Tu Z J, Gong C S, Liu G T, Li G, Uwatoko Y, Dong X L, Lei H C, Sun J P and Cheng J G 2021 Phys. Rev. Research 3 043018
[44] Du F, Luo S S, Ortiz B R, Chen Y, Duan W Y, Zhang D T, Lu X, Wilson S D, Song Y and Yuan H Q 2021 Phys. Rev. B 103 L220504
[45] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z Q, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353
[46] Kenney E M, Ortiz B R, Wang C, Wilson S D and Graf M J 2021 J. Phys.: Condens. Matter 33 235801
[47] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026
[48] Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H X, Shi Y G, Yin Q W, Le H C, Zhan S S, Chang G Q, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Wilson S D and Hasan M Z 2021 Phys. Rev. B 104 035131
[49] Wang Q, Kong P F, Shi W J, Pei C Y, Wen C H P, Gao L L, Zhao Y, Yin Q W, Wu Y S, Li G, Lei H C, Li J, Chen Y L, Yan S C and Qi Y P 2021 Adv. Mater. 33 2102813
[50] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103
[51] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M X, Wang Z Q, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[52] Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G and Chen X L 2021 Chin. Phys. Lett. 38 057402
[53] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J and Xian Z Z 2021 Chin. Phys. Lett. 38 057403
[54] Mu C, Yin Q W, Tu Z J, Gong C S, Lei H C, Li Z and Luo J L 2021 Chin. Phys. Lett. 38 077402
[55] Failamani F, Broz P, Macció D, Puchegger S, Müller H, Salamakha L, Michor H, Grytsiv A, Saccone A, Bauer E, Giester G and Rogl P 2015 Intermetallics 65 94
[56]Degen T, Sadki M, Bron E, König U and Nénert G 2014 Powder Diffr. 29 S13
[57] Uwatoko Y, Todo S, Ueda K, Uchida A, Kosaka M, Mori N and Matsumoto T 2002 J. Phys.: Condens. Matter 14 11291
[58] Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15
[59] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[60] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[61] Fu L 2011 Phys. Rev. Lett. 106 106802
[62] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480
[63] Vergniory M G, Wieder B J, Elcoro L, Parkin S S P, Felser C, Bernevig B A and Regnault N 2021 arXiv: 2105.09954
[64] Disalvo F J and Waszczak J V 1980 Phys. Rev. B 22 4241
[65] Disalvo F J and Waszczak J V 1980 J. Phys. Chem. Solids 41 1311
[66] Boubeche M, Yu J, Chushan L, Huichao W, Zeng L Y, He Y, Wang X P, Su W Z, Wang M, Yao D X, Wang Z, Jun and Luo H X 2021 Chin. Phys. Lett. 38 037401
[67] Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402
[68] Boldrin D and Wills A S 2012 Adv. Cond. Matter. Phys. 2012 159
[69] Shi M Z, Yu F H, Yang Y, Meng F B, Lei B, Luo Y, Sun Z, He J F, Wang R, Wu T, Wang Z Y, Xiang Z J, Ying J J and Chen X H 2021 arXiv: 2110.09782}
[1] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[2] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[3] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[4] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[5] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[6] Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(1): 017405.
[7] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[8] Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2
Wen Wen(文雯), Chunhe Dang(党春鹤), Liming Xie(谢黎明). Chin. Phys. B, 2019, 28(5): 058504.
[9] Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors
Bosen Wang(王铂森), Yaoqing Zhang(张尧卿), Shuxiang Xu(徐淑香), Kento Ishigaki, Kazuyuki Matsubayashi, Jin-Guang Cheng(程金光), Hideo Hosono, Yoshiya Uwatoko. Chin. Phys. B, 2019, 28(10): 107401.
[10] Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets
Zheng Li(李政), Guo-qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077404.
[11] Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS2 single crystal
Qing Hu(胡庆), Cong Yin(尹聪), Leilei Zhang(张雷雷), Li Lei(雷力), Zhengshang Wang(王正上), Zhiyu Chen(陈志禹), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(1): 017104.
[12] Tunable charge density wave in TiS3 nanoribbons
Ce Huang(黄策), Enze Zhang(张恩泽), Xiang Yuan(袁翔), Weiyi Wang(王伟懿), Yanwen Liu(刘彦闻), Cheng Zhang(张成), Jiwei Ling(凌霁玮), Shanshan Liu(刘姗姗), Faxian Xiu(修发贤). Chin. Phys. B, 2017, 26(6): 067302.
[13] Pressure effect on magnetic phase transition and spin-glass-like behavior of GdCo2B2
Guang-Hui Hu(胡光辉), Ling-Wei Li(李领伟), Umehara Izuru. Chin. Phys. B, 2016, 25(6): 067501.
[14] Structural stability and electrical properties of AlB2-type MnB2 under high pressure
Meng Xiang-Xu (孟祥旭), Fan Jing (范靖), Bao Kuo (包括), Li Fang-Fei (李芳菲), Huang Xiao-Li (黄晓丽), Li Yan (李岩), Tian Fu-Bo (田夫波), Duan De-Fang (段德芳), Jin Xi-Lian (靳锡联), Zhu Pin-Wen (朱品文), He Zhi (何志), Zhou Qiang (周强), Gao Chun-Xiao (高春晓), Liu Bing-Bing (刘冰冰), Cui Tian (崔田). Chin. Phys. B, 2014, 23(1): 016102.
[15] Interplay of superconductivity and d-f correlation in CeFeAs1-xPxO1-yFy
Luo Yong-Kang (罗永康), Li Yu-Ke (李玉科), Wang Cao (王操), Lin Xiao (林效), Dai Jian-Hui (戴建辉), Cao Guang-Han (曹光旱), Xu Zhu-An (许祝安). Chin. Phys. B, 2013, 22(8): 087415.
No Suggested Reading articles found!