Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017401    DOI: 10.1088/1674-1056/ac3222
Special Issue: SPECIAL TOPIC — Non-Hermitian physics
SPECIAL TOPIC—Non-Hermitian physics Prev   Next  

Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice

Shujie Cheng(成书杰) and Xianlong Gao(高先龙)
Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  A one-dimensional non-Hermitian quasiperiodic p-wave superconductor without $\mathcal{PT}$-symmetry is studied. By analyzing the spectrum, we discovered that there still exists real-complex energy transition even if the inexistence of $\mathcal{PT}$-symmetry breaking. By the inverse participation ratio, we constructed such a correspondence that pure real energies correspond to the extended states and complex energies correspond to the localized states, and this correspondence is precise and effective to detect the mobility edges. After investigating the topological properties, we arrived at a fact that the Majorana zero modes in this system are immune to the non-Hermiticity.
Keywords:  non-Hermiticity      Majorana zero mode      mobility edge      unconventional real-complex transition  
Received:  26 August 2021      Revised:  18 October 2021      Accepted manuscript online:  22 October 2021
PACS:  74.20.-z (Theories and models of superconducting state)  
  72.20.Ee (Mobility edges; hopping transport)  
  71.23.An (Theories and models; localized states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11835011 and 12174346).
Corresponding Authors:  Xianlong Gao     E-mail:  gaoxl@zjnu.edu.cn

Cite this article: 

Shujie Cheng(成书杰) and Xianlong Gao(高先龙) Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice 2022 Chin. Phys. B 31 017401

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Mott N 1987 J. Phys. C 20 3075
[3] Aubry S and André G 1980 Ann. Israel Phys. Soc. 3 18
[4] Sarma S D, He S and Xie X C 1988 Phys. Rev. Lett. 61 2144
[5] Sarma S D, He S and Xie X C 1990 Phys. Rev. B 41 5544
[6] Liu T, Xianlong G, Chen S and Guo H 2017 Phys. Lett. A 381 3683
[7] Liu T and Guo H 2018 Phys. Rev. B 98 104201
[8] Liu T, Wang P and Xianlong G 2016 arXiv: 1609.06939[cond-mat]
[9] Xiao T, Xie D, Dong Z, Chen T, Yi W and Yan B 2021 Sci. Bull. 66 2175
[10] Biddle J and Sarma S D 2010 Phys. Rev. Lett. 104 070601
[11] Ganeshan S, Pixley J H and Sarma S D 2015 Phys. Rev. Lett. 114 146601
[12] Xu Z, Huangfu H, Zhang Y and Chen S 2020 New J. Phys. 22 013036
[13] Wang Y, Xia X, Wang Y, Zheng Z and Liu X J 2021 Phys. Rev. B 103 174205
[14] Liu T, Zhu Y, Cheng S, Li F, Guo H and Pu Y 2021 arXiv: 2101.00177[cond-mat]
[15] Kohmoto M and Tobe D 2008 Phys. Rev. B 77 134204
[16] Sun M L, Wang G, Li N B and Nakayama T 2015 Euro. Phys. Lett. 110 57003
[17] Gopalakrishnan S 2017 Phys. Rev. B 96 054202
[18] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[19] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[20] Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
[21] Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D and Soljacic M 2015 Nature 525 354
[22] Ding K, Ma G, Xiao M, Zhang Z Q and Chan C T 2016 Phys. Rev. X 6 021007
[23] Doppler J, Mailybaev A A, Bohm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N and Rotter S 2016 Nature 537 76
[24] Xu H, Mason D, Jiang L and Harris J G E 2016 Nature 537 80
[25] Midya B, Zhao H and Feng L 2018 Nat. Commun. 9 2674
[26] Martinez Alvarez V M, Barrios Vargas J E and Foa Torres L E F 2018 Phys. Rev. B 97 121401(R)
[27] Lee T E 2016 Phys. Rev. Lett. 116 133903
[28] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[29] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[30] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801
[31] Zhang K, Yang Z and Fang C 2020 Phys. Rev. Lett. 125 126402
[32] Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802
[33] Liu J S, Han Y Z and Liu C S 2020 Chin. Phys. B 29 010302
[34] Jazaeri A and Satija I I 2001 Phys. Rev. E 63 036222
[35] Yuce C 2014 Phys. Lett. A 378 2024
[36] Liang C H, Scott D D and Joglekar Y N 2014 Phys. Rev. A 89 030102
[37] Jiang H, Lang L J, Yang C, Zhu S L and Chen S 2019 Phys. Rev. B 100 054301
[38] Zeng Q B, Chen S and Lu R 2017 Phys. Rev. A 95 062118
[39] Longhi S 2019 Phys. Rev. Lett. 122 237601
[40] Longhi S 2019 Phys. Rev. B 100 125157
[41] Schiffer S, Liu X J, Hui H and Wang J 2021 Phys. Rev. A 103 L011302
[42] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570
[43] Hatano N and Nelson D R 1997 Phys. Rev. B 56 8651
[44] Hatano N and Nelson D R 1998 Phys. Rev. B 58 8384
[45] Brouwer P W, Silvestrov P G and Beenakker C W J 1997 Phys. Rev. B 56 R4333
[46] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[47] Liu Y, Jiang X P, Cao J and Chen S 2020 Phys. Rev. B 101 174205
[48] Zeng Q B and Xu Y 2020 Phys. Rev. Research 2 033052
[49] Liu T, Guo H, Pu Y and Longhi S 2020 Phys. Rev. B 102 024205
[50] Jendrzejewski F, Bernard A, Mueller K, Cheinet P, Josse V, Piraud M, Pezzé L, Sanchez-Palencia L, Aspect A and Bouyer P 2012 Nat. Phys. 8 398
[51] McGehee W R, Kondov S S, Xu W, Zirbel J J and DeMarco B 2013 Phy. Rev. Lett. 111 145303
[52] Semeghini G, Landini M, Castilho P, Roy S, Spagnolli G, Trenkwalder A, Fattori M, Inguscio M and Modugno G 2015 Nat. Phys. 11 554
[53] Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Sarma S D and Bloch I 2018 Phys. Rev. Lett. 120 160404
[54] An F A, Meier E J and Gadway B 2018 Phys. Rev. X 8 031045
[55] Kohlert T, Scherg S, Li X, Lüschen H P, Sarma S D, Bloch I and Aidelsburger M 2019 Phys. Rev. Lett. 122 170403
[56] An F A, Padavic K, Meier E J, Hegde S, Ganeshan S, Pixley J H, Vishveshwara S and Gadway B 2021 Phys. Rev. Lett. 126 040603
[57] Kitaev A Y 2001 Phys.-Usp. 44 131
[58] Cai X, Lang L J, Chen S and Wang Y 2013 Phys. Rev. Lett. 110 176403
[59] DeGottardi W, Sen D and Vishveshwara S 2013 Phys. Rev. Lett. 110 146404
[60] Wang J, Liu X J, Xianlong G and Hu H 2016 Phys. Rev. B 93 104504
[61] Liu T, Wang P, Chen S and Xianlong G 2018 J. Phys. B: At. Mol. Opt. Phys. 51 025301
[62] Yahyavi M, Hetényi B and Tanatar B 2019 Phys. Rev. B 100 064202
[63] Yao H, Khouldi H, Bresque L and Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405
[64] Yao H, Giamarchi T and Sanchez-Palencia L 2020 Phys. Rev. Lett. 125 060401
[65] Cheng S, Zhu Y, Xianlong G and Liu T 2021 arXiv: 2102.00737[condmat]
[66] Zeng Q B, Shu S and Lü R 2018 New. J. Phys. 20 053012
[67] Tong X, Meng Y, Jiang X, Chao L, Neto G D de M and Xianlong G 2021 Phys. Rev. B 103 104202
[68] Liu T, Cheng S, Guo H and Xianlong G 2021 Phys. Rev. B 103 104203
[69] San-Jose P, Cayao J, Prada E and Aguado R 2016 Sci. Rep. 6 21427
[70] Avila J, Peñaranda F, Prada E, San-Jose P and Aguado R 2019 Commun. Phys. 2 133
[71] Menke H and Hirschmann M M 2017 Phys. Rev. B 95 174506
[72] Li C, Zhang X Z, Zhang G and Song Z 2018 Phys. Rev. B 97 115436
[73] Kawabata K, Ashida Y, Katsura H and Ueda M 2018 Phys. Rev. B 98 085116
[74] Yamamoto K, Nakagawa M, Adachi K, Takasan K, Ueda M and Kawakami N 2019 Phys. Rev. Lett. 123 123601
[75] Hamazaki R, Kawabata K and Ueda M 2019 Phys. Rev. Lett. 123 090603
[76] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[77] I Snyman, Tworzydlo J and Beenakker C W J 2008 Phys. Rev. B 78 045118
[78] Zhang P and Nori F 2016 New J. Phys. 18 043033
[79] Li H L, Chen C Z, Jiang H and Xie X C 2021 arXiv: 2107.04752[cond-mat]
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[6] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[7] Cross correlation mediated by distant Majorana zero modes with no overlap
Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇). Chin. Phys. B, 2022, 31(1): 017402.
[8] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[9] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[10] Topological superconductivity in a Bi2Te3/NbSe2 heterostructure: A review
Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(6): 067403.
[11] Analytical treatment of Anderson localization in a chain of trapped ions experiencing laser Bessel beams
Jun Wen(文军), Jian-Qi Zhang(张建奇), Lei-Lei Yan(闫磊磊), Mang Feng(冯芒). Chin. Phys. B, 2019, 28(1): 010306.
[12] Explicit forms of zero modes in symmetric interacting Kitaev chain without and with dimerization
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(6): 067101.
[13] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[14] Phase diagram of a family of one-dimensional nearest-neighbor tight-binding models with an exact mobility edge
Long-Yan Gong(巩龙延), Xiao-Xin Zhao(赵小新). Chin. Phys. B, 2017, 26(7): 077202.
[15] Uncertainties of clock and shift operators for an electron in one-dimensional nonuniform lattice systems
Long-Yan Gong(巩龙延), You-Gen Ding(丁友根), Yong-Qiang Deng(邓永强). Chin. Phys. B, 2017, 26(11): 117201.
No Suggested Reading articles found!