Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067101    DOI: 10.1088/1674-1056/27/6/067101

Explicit forms of zero modes in symmetric interacting Kitaev chain without and with dimerization

Yiming Wang(王一鸣)1, Zhidan Li(李志聃)1, Qiang Han(韩强)1,2
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China

The fermionic and bosonic zero modes of the one-dimensional (1D) interacting Kitaev chain at the symmetric point are unveiled. The many-body structures of the Majorana zero modes in the topological region are given explicitly by carrying out a perturbation expansion up to infinite order. We also give the analytic expressions of the bosonic zero modes in the topologically trivial phase. Our results are generalized to the hybrid fermion system comprised of the interacting Kitaev model and the Su-Schrieffer-Heeger (SSH) model, in which we show that these two types of zero modes can coexist in a certain region of its phase diagram.

Keywords:  Majorana zero modes      bosonic zero modes      interacting Kitaev chain  
Received:  29 January 2018      Revised:  22 March 2018      Accepted manuscript online: 
PACS:  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
  74.20.-z (Theories and models of superconducting state)  
  75.10.Pq (Spin chain models)  

Project supported by the National Natural Science Foundation of China (Grant No.11274379) and the Research Funds of Renmin University of China (Grant No.14XNLQ07).

Corresponding Authors:  Qiang Han     E-mail:

Cite this article: 

Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强) Explicit forms of zero modes in symmetric interacting Kitaev chain without and with dimerization 2018 Chin. Phys. B 27 067101

[1] Kitaev A Y 2001 Phys.-Usp. 44 131
[2] Alicea J 2012 Rep. Prog. Phys. 75 076501
[3] Fendley P 2012 J. Stat. Mech. 2012 11020
[4] Hegde S S and Vishveshwara S 2016 Phys. Rev. B 94 115166
[5] Sau J D, Clarke D J and Tewari S 2011 Phys. Rev. B 84 094505
[6] Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412
[7] Leijnse M and Flensberg K 2012 Semicond. Sci. Tech. 27 124003
[8] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[9] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[10] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[11] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795
[12] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[13] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[14] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[15] Stanescu T D, Lutchyn R M and Das Sarma S 2011 Phys. Rev. B 84 144522
[16] Hassler F and Schuricht D 2012 New J. Phys. 14 125018
[17] Thomale R, Rachel S and Schmitteckert P 2012 Phys. Rev. B 88 161103(R)
[18] Katsura H, Schuricht D and Takahashi M 2015 Phys. Rev. B 92 115137
[19] Kells G 2015 Phys. Rev. B 92 155434
[20] Kells G 2015 Phys. Rev. B 92 081401
[21] Miao J J, Jin H K, Zhang F C and Zhou Y 2017 Phys. Rev. Lett. 118 267701
[22] Goldstein G and Chamon Claudio 2012 Phys. Rev. B 86 115122
[23] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[24] Wakatsuki R, Ezawa M, Tanaka Y and Nagaosa N 2014 Phys. Rev. B 90 014505
[25] Sticlet D, Seabra L, Pollmann F and Cayssol J 2015 Phys. Rev. B 89 115430
[26] Gao Y, Zhou T, Huang H X and Huang R 2015 Sci. Rep. 5 17049
[27] Liu D P 2016 Chin. Phys. B 25 057101
[28] Zhou B Z and Zhou B 2016 Chin. Phys. B 25 107401
[29] Klett M, Cartarius H, Dast D, Main J and Wunner G 2017 Phys. Rev. A 95 053626
[30] Lin Y, Hao W C, Wang M, Qian J Q and Guo H M 2017 Sci. Rep. 7 9210
[31] Kawabata K, Kobayashi R, Wu N and Katsura H 2017 Phys. Rev. B 95 195140
[32] Ezawa M 2017 Phys. Rev. B 96 121105(R)
[33] Wang Y, Miao J J, Jin H K and Chen S 2017 Phys. Rev. B 96 205428
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Cross correlation mediated by distant Majorana zero modes with no overlap
Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇). Chin. Phys. B, 2022, 31(1): 017402.
[3] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[4] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[5] Topological phase boundary in a generalized Kitaev model
Da-Ping Liu(刘大平). Chin. Phys. B, 2016, 25(5): 057101.
[6] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
Bo-Zhen Zhou(周博臻), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(10): 107401.
No Suggested Reading articles found!