CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Integer quantum Hall effect in Kekulé-patterned graphene |
Yawar Mohammadi† and Samira Bahrami |
Department of Physics, Farhangian University, Tehran, Iran |
|
|
Abstract Y-shaped Kekulé bond textures in a honeycomb lattice on a graphene-copper superlattice have recently been experimentally revealed. In this paper, the effects of such a bond modulation on the transport coefficients of Kekulé-patterned graphene are investigated in the presence of a perpendicular magnetic field. Analytical expressions are derived for the Hall and longitudinal conductivities using the Kubo formula. It is found that the Y-shaped Kekulé bond texture lifts the valley degeneracy of all Landau levels except that of the zero mode, leading to additional plateaus in the Hall conductivity accompanied by a split of the corresponding peaks in the longitudinal conductivity. Consequently, the Hall conductivity is quantized as ±ne2/h for n=2, 4, 6, 8, 10,..., excluding some plateaus that disappear due to the complete overlap of the Landau levels of different cones. These results also suggest that DC Hall conductivity measurements will allow us to determine the Kekulé bond texture amplitude.
|
Received: 16 March 2021
Revised: 15 July 2021
Accepted manuscript online: 07 August 2021
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
Fund: Project supported by the Farhangian University. |
Corresponding Authors:
Yawar Mohammadi
E-mail: y.mohammadi@cfu.ac.ir
|
Cite this article:
Yawar Mohammadi and Samira Bahrami Integer quantum Hall effect in Kekulé-patterned graphene 2022 Chin. Phys. B 31 017305
|
[1] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y and Wang F 2019 Nat. Phys. 15 237. [2] Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D and Dean C R 2018 Nature 557 404. [3] Cao Y, Fatemi V, Fang S., Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [4] Naumis G G, Barraza-Lopez S, Oliva-Leyva M and Terrones H 2017 Rep. Prog. Phys. 80 096501 [5] Chowdhury T, Kim J, Sadler E C, Li C, Lee S W, Jo K, Xu W N, Gracias D H, Drichko N V, Jariwala D, Brintlinger T H, Mueller T, Park H G and Kempa T J 2020 Nat. Nanotechnol. 15 29 [6] Zhang D-B, Seifert G and Chang K 2014 Phys. Rev. Lett. 112 096805 [7] Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701 [8] Chu Y, Liu L, Yuan Y, Shen C, Yang R, Shi D, Yang W and Zhang G 2020 Chin. Phys. B 29 128104 [9] Gutiérrez C, Kim C J, Brown L, Schiros T, Nordlund D, Lochocki E B, Shen K M, Park J and Pasupathy A N 2016 Nat. Phys. 12 950 [10] Gamayun O V, Ostroukh V P, Gnezdilov N V, Adagideli İ and Beenakker C W J 2018 New J. Phys. 20 023016 [11] Wu Q P, Chang L L, Li Y Z, Liu Z F and Xiao X B 2020 Nanoscale Research Letters 15 1 [12] Andrade E, Carrillo-Bastos R and Naumis G G 2019 Phys. Rev. B 99 035411 [13] Andrade E, Carrillo-Bastos R, Pantaleón P A and Mireles F 2020 J. Appl. Phys. 127 054304 [14] Wang J J, Liu S, Wang J and Liu J F 2018 Phys. Rev. B 98 195436 [15] Herrera S A and Naumis G G 2020 Phys. Rev. B 101 205413 [16] Mohammadi Y 2021 ECS J. Solid State Sci. Technol. 10 061011 [17] Herrera S A and Naumis G G 2020 Phys. Rev. B 102 205429 [18] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 [19] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [20] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [21] Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801 [22] McCann E and Fal’ko V I 2006 Phys. Rev. Lett. 96 086805 [23] Henriksen E A, Nandi D and Eisenstein J P 2012 Phys. Rev. X 2 011004 [24] Min H and MacDonald A H 2008 Phys. Rev. B 77 155416 [25] Min H and MacDonald A H 2008 Prog. Thror. Phys. Supp. 176 227 [26] Koshino M and Ando T 2008 Phys. Rev. B 77 115313 [27] Mohammadi Y 2021 Physica B 613 413022 [28] Atiyah M F and Singer I M 1968 Ann. Math. 87 484 [29] Charbonneau M, Van Vliet K M and Vasilopoulos P 1982 J. Math. Phys. 23 318 [30] Krstajić P M and Vasilopoulos P 2012 Phys. Rev. B 86 115432 [31] Shakouri K H, Vasilopoulos P, Vargiamidis V and Peeters F M 2014 Phys. Rev. B 90 235423 [32] Gusynin V P and Sharapov S G 2006 Phys. Rev. B 73 245411 [33] Tahir M, Vasilopoulos P and Peeters F M 2015 Phys. Rev. B 92 045420 [34] Tahir M and Vasilopoulos P 2015 J. Phys.: Condens. Matter 27 075303 [35] Katsnelson M I 2007 Mater. Today 10 20 [36] Katsnelson M I and Prokhorova M F 2008 Phys. Rev. B 77 205424 [37] Pachos J K and Stone M 2007 Int. J. Mod. Phys. B 21 5113 [38] Katsnelson M I 2020 The Physics of Graphene (Cambridge University Press) pp. 32–33 [39] Giesbers A J M, Zeitler U, Katsnelson M I, Ponomarenko L A, Mohiuddin T M and Maan J C 2007 Phys. Rev. Lett. 99 206803 [40] Nakamura M, Hirasawa L and Imura K I 2008 Phys. Rev. B 78 033403 [41] Hsu Y F and Guo G Y 2011 Phys. Rev. B 82 165404 [42] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379 [43] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598. [44] Chen G, Sui M, Wang D, Wang S, Jeil Jung J, Moon P, Shaffique Adam,Kenji Watanabe K, Taniguchi T, Shuyun Zhou S, Koshino M, Zhang G and Zhang Y 2017 Nano Lett. 17 3576 [45] Yang W, Lu X, Chen G, Wu S, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Voisin C, Plaçais B, Zhang Y and Zhang G 2016 Nano Lett. 16 2387 [46] Wannier G H 1978 Phys. Status Solidi B 88 757 [47] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J and Shepard K L 2011 Nat. Phys. 7 693 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|