Abstract We present a high-efficiency tunable wide-angle multi-band reflective linear-to-linear (LTL) polarization converter, which is composed of an array of two L-shaped graphene patches with different sizes. In the mid-infrared region, the proposed converter can transform x-polarized wave into y-polarized wave at four resonant frequencies. The polarization conversion ratios of the four bands reach 94.4%, 92.7%, 99.3%, and 93.1%, respectively. By carefully choosing the geometric parameter, triple-band LTL polarization conversion can also be realized. The three polarization conversion ratios reach 91.50%, 99.20%, and 97.22%, respectively. The influence of incident angle on the performances of the LTL polarization converter is investigated, and it is found that our polarization converter shows the angle insensitivity. Also, the dynamically tunable properties of the proposed polarization converter are numerically studied by changing Fermi energy. All the simulation results are conducted by finite element method.
Lan-Lan Zhang(张兰兰), Ping Li(李萍), and Xiao-Wei Song(宋霄薇) Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface 2021 Chin. Phys. B 30 127803
[1] Born M and Wolf E 1999 Principles of Optics (Cambridge:Cambridge University) [2] Andreou A and Kalayjian Z 2002 IEEE Sens. J.2 566 [3] Ding S, Li R, Luo Y and Dang A 2018 J. Opt. Soc. Am. A35 1204 [4] Seshadri S 2001 J. Opt. Soc. Am. A18 1765 [5] Du G, Saito S and Takahashi M 2011 Appl. Phys. Lett.99 191107 [6] Zhang L, Zhong H, Deng C, Zhang C and Zhao Y 2010 Opt. Express18 20491 [7] Singh R, Plum E, Menzel C, Rockstuhl C, Azad A, Cheville R, Lederer E, Zhang W and Zheludev N 2009 Phys. Rev. B.80 153104 [8] Zhou L, Wang Y, Zhou J, Ding J, Su Z, Li M, Lu M, Shi H and Sang T 2020 Appl. Phys. Express13 042008 [9] Wu L, Yang Z, Cheng Y, Zhao M, Gong R, Zheng Y, Duan J and Yuan X 2013 Appl. Phys. Lett.103 021903 [10] Chin J, Lu M and Cui T 2008 Appl. Phys. Lett.93 251903 [11] Dong G, Shi H, Xia S, Li W, Zhang A, Xu Z and Wei X 2016 Chin. Phys. B25 084202 [12] Song K, Liu Y, Luo C and Zhao X 2014 J. Phys. D:Appl. Phys.47 505104 [13] Liu Y, Luo Y, Liu C, Song K and Zhao X 2017 Appl. Phys. A123 571 [14] Gao X, Han X, Cao W, Li H, Ma H and Cui T 2015 IEEE Trans. Antennas Propag.63 3522 [15] Li Y, Zhang J, Qu S, Wang J, Zheng L, Pang Y, Xu Z and Zhang A 2015 J. Appl. Phys.117 044501 [16] Ran Y, Shi L, Wang J, Wang S, Wang G and Liang J 2019 Opt. Commun.451 124 [17] Fahad A, Ruan C and Chen K 2019 Electronics8 869 [18] Pu Y, Luo Y, Liu L, He D, Xu H, Jiang H, Jiang Y and Liu Z 2018 Chin. Phys. B27 024202 [19] Zang X, Liu S, Gong H, Wang Y and Zhu Y 2018 J. Opt. Soc. Am. B35 950 [20] Chang C, Zhao Z, Li D, Taylor A, Fan S and Chen H 2019 Phys. Rev. Lett.123 237401 [21] Kovoselov K, Fal'ko V, Colombo L, Gellert P, Schwab M and Kim K 2012 Nature490 192 [22] Su Z, Wang Y, Luo X, Luo H, Zhang C, Li M, Sang T and Yang G 2018 Phys. Chem. Chem. Phys.20 14357 [23] Ye L, Sui K, Zhang Y and Liu Q 2019 Nanoscale11 3229 [24] Nikitin A, Guinea F, Garcia-Vidal F and Martin-Moreno L 2011 Phys. Rev. B84 161407 [25] Ye L, Chen Y, Cai G, Liu N, Zhu J, Song Z and Liu Q 2017 Opt. Express25 11223 [26] Mueller T, Xia F and Avouris P 2010 Nat. Photon.4 297 [27] Chen M, Sun W, Cai J, Chang L and Xiao X 2017 Plasmonics12 699 [28] Ding J, Arigong B, Ren H, Shao J, Zhou M, Lin Y and Zhang H 2015 Plasmonics10 351 [29] Guo T and Argyropoulos C 2016 Opt. Lett.41 5592 [30] Yang C, Luo Y, Guo J, Pu Y, He D, Jiang Y, Xu J and Liu Z 2016 Opt. Express24 16913 [31] Zhang L, Li P and Song X 2020 J. Opt. Soc. Am. B37 1921 [32] Yao Z, Wei T, Wang Y, Lu M, Zhang C and Zhang L 2019 Appl. Opt.58 3570 [33] Cheng H, Chen S, Yu P, Li J, Deng L and Tian J 2013 Opt. Lett.38 1567 [34] Peng L, Li X, Jiang X and Li S 2018 J. Lightwave Technol.36 4250 [35] Chen M, Chang L, Gao X, Chen H, Wang C, Xiao X and Zhao D 2017 IEEE Photon. J.9 4601011 [36] Peng J, Zhu Z, Zhang J, Yuan X and Qin S 2016 Appl. Phys. Express9 055102 [37] Zhu J, Li S, Deng L, Zhang C, Yang Y and Zhu H 2018 Opt. Mater. Express8 1164 [38] Zeng F, Ye L, Li L, Wang Z, Zhao W and Zhang Y 2019 Opt. Express27 33826 [39] Yao Z, Wang Y, Lu M and Zhang C 2019 J. Opt. Soc. Am. B36 7 [40] Zhang L, Li P and Song X 2020 J. Opt. Soc. Am. B37 1 [41] Chen M, Xiao X, Chang L, Wang C and Zhao D 2017 Opt. Commun.394 50 [42] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L and Ruoff R 2009 Science324 1312 [43] Abbas A, Liu G, Liu B, Zhang L, Liu H, Ohlberg D, Wu W and Zhou C 2014 ACS Nano8 1538 [44] Ordal M, Long L, Bell R, Bell S, Bell R, Alexander R and Ward C 1983 Appl. Opt.22 1099 [45] Yao Z, Wang Y, Lu M and Zhang C 2019 J. Opt. Soc. Am. B36 7 [46] Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y and Zhang H 2014 Opt. Express22 29143 [47] Liu Z and Bai B 2017 Opt. Express25 8584 [48] Hao J, Ren Q, An Z, Huang X, Chen Z, Qiu M and Zhou L 2009 Phys. Rev. A80 023807 [49] Geim A 2009 Science324 1530 [50] Koppens F, Chang D and García de Abajo F 2011 Nano Lett.11 3370
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.