CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface |
Lan-Lan Zhang(张兰兰)†, Ping Li(李萍), and Xiao-Wei Song(宋霄薇) |
School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China |
|
|
Abstract We present a high-efficiency tunable wide-angle multi-band reflective linear-to-linear (LTL) polarization converter, which is composed of an array of two L-shaped graphene patches with different sizes. In the mid-infrared region, the proposed converter can transform x-polarized wave into y-polarized wave at four resonant frequencies. The polarization conversion ratios of the four bands reach 94.4%, 92.7%, 99.3%, and 93.1%, respectively. By carefully choosing the geometric parameter, triple-band LTL polarization conversion can also be realized. The three polarization conversion ratios reach 91.50%, 99.20%, and 97.22%, respectively. The influence of incident angle on the performances of the LTL polarization converter is investigated, and it is found that our polarization converter shows the angle insensitivity. Also, the dynamically tunable properties of the proposed polarization converter are numerically studied by changing Fermi energy. All the simulation results are conducted by finite element method.
|
Received: 14 April 2021
Revised: 08 June 2021
Accepted manuscript online: 21 June 2021
|
PACS:
|
78.67.Wj
|
(Optical properties of graphene)
|
|
61.48.Gh
|
(Structure of graphene)
|
|
42.81.Gs
|
(Birefringence, polarization)
|
|
Fund: Project supported by the School Youth Fund of Henan University of Science and Technology (Grant No. 2014QN045). |
Corresponding Authors:
Lan-Lan Zhang
E-mail: zhanglan80515@163.com
|
Cite this article:
Lan-Lan Zhang(张兰兰), Ping Li(李萍), and Xiao-Wei Song(宋霄薇) Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface 2021 Chin. Phys. B 30 127803
|
[1] Born M and Wolf E 1999 Principles of Optics (Cambridge:Cambridge University) [2] Andreou A and Kalayjian Z 2002 IEEE Sens. J. 2 566 [3] Ding S, Li R, Luo Y and Dang A 2018 J. Opt. Soc. Am. A 35 1204 [4] Seshadri S 2001 J. Opt. Soc. Am. A 18 1765 [5] Du G, Saito S and Takahashi M 2011 Appl. Phys. Lett. 99 191107 [6] Zhang L, Zhong H, Deng C, Zhang C and Zhao Y 2010 Opt. Express 18 20491 [7] Singh R, Plum E, Menzel C, Rockstuhl C, Azad A, Cheville R, Lederer E, Zhang W and Zheludev N 2009 Phys. Rev. B. 80 153104 [8] Zhou L, Wang Y, Zhou J, Ding J, Su Z, Li M, Lu M, Shi H and Sang T 2020 Appl. Phys. Express 13 042008 [9] Wu L, Yang Z, Cheng Y, Zhao M, Gong R, Zheng Y, Duan J and Yuan X 2013 Appl. Phys. Lett. 103 021903 [10] Chin J, Lu M and Cui T 2008 Appl. Phys. Lett. 93 251903 [11] Dong G, Shi H, Xia S, Li W, Zhang A, Xu Z and Wei X 2016 Chin. Phys. B 25 084202 [12] Song K, Liu Y, Luo C and Zhao X 2014 J. Phys. D:Appl. Phys. 47 505104 [13] Liu Y, Luo Y, Liu C, Song K and Zhao X 2017 Appl. Phys. A 123 571 [14] Gao X, Han X, Cao W, Li H, Ma H and Cui T 2015 IEEE Trans. Antennas Propag. 63 3522 [15] Li Y, Zhang J, Qu S, Wang J, Zheng L, Pang Y, Xu Z and Zhang A 2015 J. Appl. Phys. 117 044501 [16] Ran Y, Shi L, Wang J, Wang S, Wang G and Liang J 2019 Opt. Commun. 451 124 [17] Fahad A, Ruan C and Chen K 2019 Electronics 8 869 [18] Pu Y, Luo Y, Liu L, He D, Xu H, Jiang H, Jiang Y and Liu Z 2018 Chin. Phys. B 27 024202 [19] Zang X, Liu S, Gong H, Wang Y and Zhu Y 2018 J. Opt. Soc. Am. B 35 950 [20] Chang C, Zhao Z, Li D, Taylor A, Fan S and Chen H 2019 Phys. Rev. Lett. 123 237401 [21] Kovoselov K, Fal'ko V, Colombo L, Gellert P, Schwab M and Kim K 2012 Nature 490 192 [22] Su Z, Wang Y, Luo X, Luo H, Zhang C, Li M, Sang T and Yang G 2018 Phys. Chem. Chem. Phys. 20 14357 [23] Ye L, Sui K, Zhang Y and Liu Q 2019 Nanoscale 11 3229 [24] Nikitin A, Guinea F, Garcia-Vidal F and Martin-Moreno L 2011 Phys. Rev. B 84 161407 [25] Ye L, Chen Y, Cai G, Liu N, Zhu J, Song Z and Liu Q 2017 Opt. Express 25 11223 [26] Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297 [27] Chen M, Sun W, Cai J, Chang L and Xiao X 2017 Plasmonics 12 699 [28] Ding J, Arigong B, Ren H, Shao J, Zhou M, Lin Y and Zhang H 2015 Plasmonics 10 351 [29] Guo T and Argyropoulos C 2016 Opt. Lett. 41 5592 [30] Yang C, Luo Y, Guo J, Pu Y, He D, Jiang Y, Xu J and Liu Z 2016 Opt. Express 24 16913 [31] Zhang L, Li P and Song X 2020 J. Opt. Soc. Am. B 37 1921 [32] Yao Z, Wei T, Wang Y, Lu M, Zhang C and Zhang L 2019 Appl. Opt. 58 3570 [33] Cheng H, Chen S, Yu P, Li J, Deng L and Tian J 2013 Opt. Lett. 38 1567 [34] Peng L, Li X, Jiang X and Li S 2018 J. Lightwave Technol. 36 4250 [35] Chen M, Chang L, Gao X, Chen H, Wang C, Xiao X and Zhao D 2017 IEEE Photon. J. 9 4601011 [36] Peng J, Zhu Z, Zhang J, Yuan X and Qin S 2016 Appl. Phys. Express 9 055102 [37] Zhu J, Li S, Deng L, Zhang C, Yang Y and Zhu H 2018 Opt. Mater. Express 8 1164 [38] Zeng F, Ye L, Li L, Wang Z, Zhao W and Zhang Y 2019 Opt. Express 27 33826 [39] Yao Z, Wang Y, Lu M and Zhang C 2019 J. Opt. Soc. Am. B 36 7 [40] Zhang L, Li P and Song X 2020 J. Opt. Soc. Am. B 37 1 [41] Chen M, Xiao X, Chang L, Wang C and Zhao D 2017 Opt. Commun. 394 50 [42] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L and Ruoff R 2009 Science 324 1312 [43] Abbas A, Liu G, Liu B, Zhang L, Liu H, Ohlberg D, Wu W and Zhou C 2014 ACS Nano 8 1538 [44] Ordal M, Long L, Bell R, Bell S, Bell R, Alexander R and Ward C 1983 Appl. Opt. 22 1099 [45] Yao Z, Wang Y, Lu M and Zhang C 2019 J. Opt. Soc. Am. B 36 7 [46] Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y and Zhang H 2014 Opt. Express 22 29143 [47] Liu Z and Bai B 2017 Opt. Express 25 8584 [48] Hao J, Ren Q, An Z, Huang X, Chen Z, Qiu M and Zhou L 2009 Phys. Rev. A 80 023807 [49] Geim A 2009 Science 324 1530 [50] Koppens F, Chang D and García de Abajo F 2011 Nano Lett. 11 3370 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|