Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127803    DOI: 10.1088/1674-1056/ac0cdd
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface

Lan-Lan Zhang(张兰兰), Ping Li(李萍), and Xiao-Wei Song(宋霄薇)
School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, China
Abstract  We present a high-efficiency tunable wide-angle multi-band reflective linear-to-linear (LTL) polarization converter, which is composed of an array of two L-shaped graphene patches with different sizes. In the mid-infrared region, the proposed converter can transform x-polarized wave into y-polarized wave at four resonant frequencies. The polarization conversion ratios of the four bands reach 94.4%, 92.7%, 99.3%, and 93.1%, respectively. By carefully choosing the geometric parameter, triple-band LTL polarization conversion can also be realized. The three polarization conversion ratios reach 91.50%, 99.20%, and 97.22%, respectively. The influence of incident angle on the performances of the LTL polarization converter is investigated, and it is found that our polarization converter shows the angle insensitivity. Also, the dynamically tunable properties of the proposed polarization converter are numerically studied by changing Fermi energy. All the simulation results are conducted by finite element method.
Keywords:  metasurface      graphene      polarization converter      multi-band  
Received:  14 April 2021      Revised:  08 June 2021      Accepted manuscript online:  21 June 2021
PACS:  78.67.Wj (Optical properties of graphene)  
  61.48.Gh (Structure of graphene)  
  42.81.Gs (Birefringence, polarization)  
Fund: Project supported by the School Youth Fund of Henan University of Science and Technology (Grant No. 2014QN045).
Corresponding Authors:  Lan-Lan Zhang     E-mail:  zhanglan80515@163.com

Cite this article: 

Lan-Lan Zhang(张兰兰), Ping Li(李萍), and Xiao-Wei Song(宋霄薇) Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface 2021 Chin. Phys. B 30 127803

[1] Born M and Wolf E 1999 Principles of Optics (Cambridge:Cambridge University)
[2] Andreou A and Kalayjian Z 2002 IEEE Sens. J. 2 566
[3] Ding S, Li R, Luo Y and Dang A 2018 J. Opt. Soc. Am. A 35 1204
[4] Seshadri S 2001 J. Opt. Soc. Am. A 18 1765
[5] Du G, Saito S and Takahashi M 2011 Appl. Phys. Lett. 99 191107
[6] Zhang L, Zhong H, Deng C, Zhang C and Zhao Y 2010 Opt. Express 18 20491
[7] Singh R, Plum E, Menzel C, Rockstuhl C, Azad A, Cheville R, Lederer E, Zhang W and Zheludev N 2009 Phys. Rev. B. 80 153104
[8] Zhou L, Wang Y, Zhou J, Ding J, Su Z, Li M, Lu M, Shi H and Sang T 2020 Appl. Phys. Express 13 042008
[9] Wu L, Yang Z, Cheng Y, Zhao M, Gong R, Zheng Y, Duan J and Yuan X 2013 Appl. Phys. Lett. 103 021903
[10] Chin J, Lu M and Cui T 2008 Appl. Phys. Lett. 93 251903
[11] Dong G, Shi H, Xia S, Li W, Zhang A, Xu Z and Wei X 2016 Chin. Phys. B 25 084202
[12] Song K, Liu Y, Luo C and Zhao X 2014 J. Phys. D:Appl. Phys. 47 505104
[13] Liu Y, Luo Y, Liu C, Song K and Zhao X 2017 Appl. Phys. A 123 571
[14] Gao X, Han X, Cao W, Li H, Ma H and Cui T 2015 IEEE Trans. Antennas Propag. 63 3522
[15] Li Y, Zhang J, Qu S, Wang J, Zheng L, Pang Y, Xu Z and Zhang A 2015 J. Appl. Phys. 117 044501
[16] Ran Y, Shi L, Wang J, Wang S, Wang G and Liang J 2019 Opt. Commun. 451 124
[17] Fahad A, Ruan C and Chen K 2019 Electronics 8 869
[18] Pu Y, Luo Y, Liu L, He D, Xu H, Jiang H, Jiang Y and Liu Z 2018 Chin. Phys. B 27 024202
[19] Zang X, Liu S, Gong H, Wang Y and Zhu Y 2018 J. Opt. Soc. Am. B 35 950
[20] Chang C, Zhao Z, Li D, Taylor A, Fan S and Chen H 2019 Phys. Rev. Lett. 123 237401
[21] Kovoselov K, Fal'ko V, Colombo L, Gellert P, Schwab M and Kim K 2012 Nature 490 192
[22] Su Z, Wang Y, Luo X, Luo H, Zhang C, Li M, Sang T and Yang G 2018 Phys. Chem. Chem. Phys. 20 14357
[23] Ye L, Sui K, Zhang Y and Liu Q 2019 Nanoscale 11 3229
[24] Nikitin A, Guinea F, Garcia-Vidal F and Martin-Moreno L 2011 Phys. Rev. B 84 161407
[25] Ye L, Chen Y, Cai G, Liu N, Zhu J, Song Z and Liu Q 2017 Opt. Express 25 11223
[26] Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297
[27] Chen M, Sun W, Cai J, Chang L and Xiao X 2017 Plasmonics 12 699
[28] Ding J, Arigong B, Ren H, Shao J, Zhou M, Lin Y and Zhang H 2015 Plasmonics 10 351
[29] Guo T and Argyropoulos C 2016 Opt. Lett. 41 5592
[30] Yang C, Luo Y, Guo J, Pu Y, He D, Jiang Y, Xu J and Liu Z 2016 Opt. Express 24 16913
[31] Zhang L, Li P and Song X 2020 J. Opt. Soc. Am. B 37 1921
[32] Yao Z, Wei T, Wang Y, Lu M, Zhang C and Zhang L 2019 Appl. Opt. 58 3570
[33] Cheng H, Chen S, Yu P, Li J, Deng L and Tian J 2013 Opt. Lett. 38 1567
[34] Peng L, Li X, Jiang X and Li S 2018 J. Lightwave Technol. 36 4250
[35] Chen M, Chang L, Gao X, Chen H, Wang C, Xiao X and Zhao D 2017 IEEE Photon. J. 9 4601011
[36] Peng J, Zhu Z, Zhang J, Yuan X and Qin S 2016 Appl. Phys. Express 9 055102
[37] Zhu J, Li S, Deng L, Zhang C, Yang Y and Zhu H 2018 Opt. Mater. Express 8 1164
[38] Zeng F, Ye L, Li L, Wang Z, Zhao W and Zhang Y 2019 Opt. Express 27 33826
[39] Yao Z, Wang Y, Lu M and Zhang C 2019 J. Opt. Soc. Am. B 36 7
[40] Zhang L, Li P and Song X 2020 J. Opt. Soc. Am. B 37 1
[41] Chen M, Xiao X, Chang L, Wang C and Zhao D 2017 Opt. Commun. 394 50
[42] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L and Ruoff R 2009 Science 324 1312
[43] Abbas A, Liu G, Liu B, Zhang L, Liu H, Ohlberg D, Wu W and Zhou C 2014 ACS Nano 8 1538
[44] Ordal M, Long L, Bell R, Bell S, Bell R, Alexander R and Ward C 1983 Appl. Opt. 22 1099
[45] Yao Z, Wang Y, Lu M and Zhang C 2019 J. Opt. Soc. Am. B 36 7
[46] Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y and Zhang H 2014 Opt. Express 22 29143
[47] Liu Z and Bai B 2017 Opt. Express 25 8584
[48] Hao J, Ren Q, An Z, Huang X, Chen Z, Qiu M and Zhou L 2009 Phys. Rev. A 80 023807
[49] Geim A 2009 Science 324 1530
[50] Koppens F, Chang D and García de Abajo F 2011 Nano Lett. 11 3370
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[8] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[11] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[12] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[13] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[14] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!