|
|
A double quantum dot defined by top gates in a single crystalline InSb nanosheet |
Yuanjie Chen(陈元杰)1, Shaoyun Huang(黄少云)1, Jingwei Mu(慕经纬)1, Dong Pan(潘东)2,3, Jianhua Zhao(赵建华)2,3, and Hong-Qi Xu(徐洪起)1,3,† |
1 Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China; 2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China |
|
|
Abstract We report on the transport study of a double quantum dot (DQD) device made from a freestanding, single crystalline InSb nanosheet. The freestanding nanosheet is grown by molecular beam epitaxy and the DQD is defined by the top gate technique. Through the transport measurements, we demonstrate how a single quantum dot (QD) and a DQD can be defined in an InSb nanosheet by tuning voltages applied to the top gates. We also measure the charge stability diagrams of the DQD and show that the charge states and the inter-dot coupling between the two individual QDs in the DQD can be efficiently regulated by the top gates. Numerical simulations for the potential profile and charge density distribution in the DQD have been performed and the results support the experimental findings and provide a better understanding of fabrication and transport characteristics of the DQD in the InSb nanosheet. The achieved DQD in the two-dimensional InSb nanosheet possesses pronounced benefits in lateral scaling and can thus serve as a new building block for the developments of quantum computation and quantum simulation technologies.
|
Received: 12 April 2021
Revised: 02 May 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
73.63.Kv
|
(Quantum dots)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303304, 2016YFA0300601, 2017YFA0204901, and 2016YFA0300802), the National Natural Science Foundation of China (Grant Nos. 91221202, 91421303, 11874071, 11974030, and 61974138), the Beijing Academy of Quantum Information Sciences (Grant No. Y18G22), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303060001), and the Beijing Natural Science Foundation, China (Grant Nos. 1202010 and 1192017). DP also acknowledges the support from Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2017156). |
Corresponding Authors:
Hong-Qi Xu
E-mail: hqxu@pku.edu.cn
|
Cite this article:
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起) A double quantum dot defined by top gates in a single crystalline InSb nanosheet 2021 Chin. Phys. B 30 128501
|
[1] Nadj-Perge S, Frolov S M, Bakkers E P A M and Kouwenhoven L P 2010 Nature 468 1084 [2] Nadj-Perge S, Pribiag V S, Van den Berg, J W G, Zuo K, Plissard S R, Bakkers E P A M, Frolov S M and Kouwenhoven L P 2012 Phys. Rev. Lett. 108 166801 [3] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 [4] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 Natl. Sci. Rev. 6 32 [5] Georgescu L M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153 [6] Hensgens T, Fujita T, Janssen L, Li X, Van Diepen C J, Reichl C, Wegscheider W, Sarma S D and Vandersypen L M K 2017 Nature 548 70 [7] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K and Alicea J 2016 Phys. Rev. X 6 031016 [8] Gharavi K, Hoving D and Baugh J 2016 Phys. Rev. B 94 155417 [9] Malciu C, Mazza L and Mora C 2018 Phys. Rev. B 98 165426 [10] Zhou Y F, Hou Z and Sun Q F 2019 Phys. Rev. B 99 195137 [11] Kulesh I, Ke C T, Thomas C, Kaewal S, Moehle C M, Metti S, Kallaher R, Gardner G C, Manfra M J and Goswami S 2020 Phys. Rev. Appl. 13 041003 [12] Yi W, Kiselev A A, Thorp J, Noah R, Nguyen B M, Bui S, Rajavel R D, Hussain T, Gyure M F, Kratz P, Qian Q, Manfra M J, Pribiag V S, Kouwenhoven L P, Marcus C M and Sokolich M 2015 Appl. Phys. Lett. 106 142103 [13] Uddin M M, Liu H W, Yang K F, Nagase K, Sekine K, Gaspe C K, Mishima T D, Santos M B and Hirayama Y 2013 Appl. Phys. Lett. 103 123502 [14] Orr J M S, Buckle P D, Fearn M, Wilding P J, Bartlett C J, Emeny M T, Buckle L and Ashley T 2006 Semicond. Sci. Technol. 21 1408 [15] Orr J M S, Buckle P D, Fearn M, Storey C J, Buckle L and Ashley T 2009 New J. Phys. 9 261 [16] Qu F, Veen J V, de Vries F K, Beukman A J A, Wimmer M, Yi W, Kiselev A A, Nguyen B M, Sokolich M, Manfra M J, Nichele F, Marcus C M and Kouwenhoven L P 2016 Nano Lett. 16 7509 [17] Masuda T, Sekine K, Nagase K, Wickramasinghe K S, Mishima T D, Santos M B and Hirayama Y 2018 Appl. Phys. Lett. 112 192103 [18] Pan D, Fan D X, Kang N, Zhi J H, Yu X Z, Xu H Q and Zhao J H 2016 Nano Lett. 16 834 [19] Xue J, Chen Y, Pan D, Wang J Y, Zhao J, Huang S and Xu H Q 2019 Appl. Phys. Lett. 114 023108 [20] Kang N, Fan D, Zhi J, Pan D, Li S, Wang C, Guo J, Zhao J H and Xu H Q 2019 Nano Lett. 19 561 [21] Chen Y, Huang S, Pan D, Xue J, Zhang L, Zhao J and Xu H Q 2021 npj 2D Mater. Appl. 5 3 [22] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180 [23] Shulman M D, Dial O E, Harvey S P, Bluhm H, Umansky V and Yacoby A 2012 Science 336 202 [24] Uddin M M, Liu H W, Yang K F, Nagase K, Mishima T D, Santos M B and Hirayama Y 2012 Appl. Phys. Lett. 101 233503 [25] Fan D, Kang N, Ghalamestani S G, Dick K A and Xu H Q 2016 Nanotechnology 27 275204 [26] Pisoni R, Lei Z, Back P, Eich M, Overweg H, Lee Y, Watanabe K, Taniguchi T, Ihn T and Ensslin K 2018 Appl. Phys. Lett. 112 123101 [27] Wang K, De Greve K, Jauregui L A, Sushko A, High A, Zhou Y, Scuri G, Taniguchi T, Watanabe K and Lukin M D 2018 Nat. Nanotechnol. 13 128 [28] Sun J, Larsson M, Maximov I, Hardtdegen H and Xu H Q 2009 Appl. Phys. Lett. 94 042114 [29] Tarucha S, Austing D G, Honda T, van der Hage R J and Kouwenhoven L P 1996 Phys. Rev. Lett. 77 3613 [30] Nagaraja S, Matahne P, Thean V Y, Leburton J P, Kim Y H and Martin R M 1997 Phys. Rev. B 56 15752 [31] Larsson M, Hardtdegen H, Nilsson H A and Xu H Q 2009 Appl. Phys. Lett. 95 192112 [32] Hofmann A, Maisi V F, Gold C, Krähenmann T, Rössler C, Basset J, Märki P, Reichl C, Wegscheider W, Ensslin K and Inn T 2016 Phys. Rev. Lett. 117 206803 [33] Song X X, Liu D, Mosallanejad V, You J, Han T Y, Chen D T, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2015 Nanoscale 7 16867 [34] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1 [35] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen M K 2007 Rev. Mod. Phys. 79 1217 [36] Zajac D M, Hazard T M, Mi X, Nielsen E and Petta J R 2016 Phys. Rev. Appl. 6 054013 [37] Hamer M, Tóvári E, Zhu M, Thompson M D, Mayorov A, Prance J, Lee Y, Haley R P, Kudrynskyi Z R, Patanè A, Terry D, Kovalyuk Z D, Ensslin K, Kretinin A V, Geim A and Gorbachev R 2018 Nano Lett. 18 3950 [38] Tang T W, O'Regan T and Wu B 2004 J. Appl. Phys. 95 7990 [39] Pino R 1998 Phys. Rev. B 58 4644 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|