Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120513    DOI: 10.1088/1674-1056/ac322a
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser

Tong Zhao(赵彤)1,2,†, Zhi-Ru Shen(申志儒)1,2, Wen-Li Xie(谢文丽)1,2, Yan-Qiang Guo(郭龑强)1,2, An-Bang Wang(王安帮)1,2,3, and Yun-Cai Wang(王云才)3,4,†
1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China;
2 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;
3 Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou 510006, China;
4 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
Abstract  The sensitivity to fault reflection is very important for larger dynamic range in fiber fault detection technique. Using time delay signature (TDS) of chaotic laser formed by optical feedback can solve the sensitivity limitation of photodetector in fiber fault detection. The TDS corresponds to the feedback position and the fault reflection can be detected by the laser diode. The sensitivity to feedback level of circular-side hexagonal resonator (CSHR) microcavity laser is numerically simulated and the feedback level boundaries of each output dynamic state are demonstrated. The peak level of TDS is utilized to analyze the sensitivity. The demonstration is presented in two aspects:the minimum feedback level when the TDS emerges and the variation degree of TDS level on feedback level changing. The results show that the CSHR microcavity laser can respond to the feedback level of 0.07%, corresponding to -63-dB feedback strength. Compared to conventional distributed feedback laser, the sensitivity improves almost 20 dB due to the shorter internal cavity length of CSHR microcavity laser. Moreover, 1% feedback level changing will induce 1.001 variation on TDS level, and this variation degree can be influenced by other critical internal parameters (active region side length, damping rate, and linewidth enhancement factor).
Keywords:  sensitivity      optical feedback      microcavity laser      nonlinear dynamic  
Received:  21 July 2021      Revised:  02 October 2021      Accepted manuscript online:  22 October 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Tp (Time series analysis)  
  06.30.-k (Measurements common to several branches of physics and astronomy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB1803500), the National Natural Science Foundation of China (Grant Nos. 61705160, 61961136002, 61822509, and 61875147), the "1331 Project" Key Innovative Research Team of Shanxi Province, China, and the National Defense Basic Scientific Research Project (Grant No. WDYX19614260203).
Corresponding Authors:  Tong Zhao, Yun-Cai Wang     E-mail:  zhaotong.tyut@outlook.com;wangyc@gdut.edu.cn

Cite this article: 

Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才) Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser 2021 Chin. Phys. B 30 120513

[1] Kleinman D A and Kisliuk P P 1962 Bell Sys. Tech. 41 453
[2] Fleming M W and Mooradian A 1981 IEEE J. Quantum Electron. 17 44
[3] Lenstra D, van Schaijk T T M and Williams K A 2019 IEEE J. Sel. Top. Quantum Electron. 25 1502113
[4] Lang R and Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[5] Ohtsubo J 2012 Semiconductor lasers: stability, instability and chaos, 3rd edn. (New York: Springer) pp. 75–168[6] Soriano M C, Garcia-Ojalvo J, Mirasso C R and Fischer I 2013 Rev. Mod. Phys. 85 421[7] Sciamanna M and Shore K A 2015 Nat. Photon. 9 151[8] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K and Davis P 2008 Nat. Photon. 2 728
[9] Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S and Pan W 2014 Opt. Express 22 6634
[10] Sang L X, Guo Y Y, Liu H F, Zhang J G and Wang Y C 2021 Opt. Express 29 7100
[11] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
[12] Wang L S, Mao X X, Wang A B, Wang Y C, Gao Z S, Li S S and Yan L S 2020 Opt. Lett. 45 4762
[13] Porte X, Soriano M C, Brunner D and Fischer I 2016 Opt. Lett. 41 2871
[14] Gao H, Wang A B, Wang L S, Jia Z W, Guo Y Y, Gao Z S, Yan L S, Qin Y W and Wang Y C 2021 Light:Sci. Appl. 10 172
[15] Appeltant L, Soriano M C, Van der Sande G, Danckaert J, Massar S, Dambre J, Schrauwen B, Mirasso C R and Fischer I 2011 Nat. Commun. 2 468
[16] Argyris A, Schwind J and Fischer I 2021 Sci. Rep. 11 6701
[17] Wang Y C, Wang B J and Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636
[18] Zhang M J and Wang Y C 2021 J. Lightw. Technol. 39 3711
[19] Hao J, Gong M L, Du P F, Lu B J, Zhang F, Zhang H T and Fu X 2016 Chin. Phys. B 25 074207
[20] Argyris A, Hamacher M, Chlouverakis K E, Bogris A and Syvridis D 2008 Phys. Rev. Lett. 100 194101
[21] Zhang M J, Niu Y N, Zhao T, Zhang J Z, Liu Y, Xu Y H, Meng J, Wang Y C and Wang A B 2018 Chin. Phys. B 27 050502
[22] Rontani D, Locquet A, Sciamanna M and Citrin D S 2007 Opt. Lett. 23 2960
[23] Wang D M, Wang L S, Zhao T, Gao H, Wang Y C, Chen X F and Wang A B 2017 Opt. Express 25 10911
[24] Jiang N, Wang C, Xue C P, Li G L, Lin S Q and Qiu K 2017 Opt. Express 25 14359
[25] Ma Y T, Xiang S Y, Guo X X, Song Z W, Wen A J and Hao Y 2020 Opt. Express 28 1665
[26] Ding L, Wu J G, Xia G Q, Shen J T, Li N Y and Wu Z M 2011 Acta Phys. Sin. 60 014210 (in Chinese)
[27] Zhang Y N, Feng Y L, Wang X Q, Zhao Z M, Gao C and Yao Z H 2020 Acta Phys. Sin. 69 090501 (in Chinese)
[28] Zhao T, Han H, Zhang J G, Liu X L, Chang X M, Wang A B and Wang Y C 2015 IEEE Photon. J. 7 6803909
[29] Wang Y X, Jia Z W, Gao Z S, Xiao J L, Wang L S, Wang Y C, Huang Y Z and Wang A B 2020 Opt. Express 28 18507
[30] Xiao Z X, Huang Y Z, Yang Y D, Xiao J L and Ma X W 2017 Opt. Lett. 42 1309
[31] Dong J X, Zhuang J P and Chan S C 2017 Opt. Lett. 42 4291
[32] Acket G A, Lenstra D, Boef A J D and Verbeek B H 1984 IEEE J. Quantum Electron. 20 1163
[33] Helms J and Petermann K 1990 IEEE J. Quantum Electron. 26 55523
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[3] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[4] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[5] Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback
Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼). Chin. Phys. B, 2021, 30(5): 050504.
[6] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[7] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[8] Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA
Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明). Chin. Phys. B, 2021, 30(10): 108702.
[9] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[10] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[11] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[12] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[13] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[14] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[15] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
No Suggested Reading articles found!