Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120512    DOI: 10.1088/1674-1056/ac1b83
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control

Karthikeyan Rajagopal1,†, Anitha Karthikeyan2, and Balamurali Ramakrishnan1
1 Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai, India;
2 Department of Electronics and Communication Engineering, Prathyusha Engineering College, Chennai, India
Abstract  A fractional-order difference equation model of a third-order discrete phase-locked loop (FODPLL) is discussed and the dynamical behavior of the model is demonstrated using bifurcation plots and a basin of attraction. We show a narrow region of loop gain where the FODPLL exhibits quasi-periodic oscillations, which were not identified in the integer-order model. We propose a simple impulse control algorithm to suppress chaos and discuss the effect of the control step. A network of FODPLL oscillators is constructed and investigated for synchronization behavior. We show the existence of chimera states while transiting from an asynchronous to a synchronous state. The same impulse control method is applied to a lattice array of FODPLL, and the chimera states are then synchronized using the impulse control algorithm. We show that the lower control steps can achieve better control over the higher control steps.
Keywords:  discrete Josephson junction      fractional order      chaos      impulse control      chimera  
Received:  16 March 2021      Revised:  11 June 2021      Accepted manuscript online:  07 August 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Center for Nonlinear Systems, Chennai Institute of Technology, India (Grant No. CIT/CNS/2020/RD/061).
Corresponding Authors:  Karthikeyan Rajagopal     E-mail:  rkarthiekeyan@gmail.com

Cite this article: 

Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control 2021 Chin. Phys. B 30 120512

[1] de Bellescize H 1932 Onde Electr. 11 230
[2] Banerjee T and Sarkar B C 2005 Signal Process. 85 1139
[3] Banerjee T and Sarkar B C 2005 Signal Process. 85 1611
[4] Stensby J L 1993 J. Franklin Inst. 330 775
[5] Piqueira J R C 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 2328
[6] Best R E 2003 McGraw-Hill, New York
[7] Monteiro L H A, Favaretto Filho D N and Piqueira J R C 2004 IEEE Signal Process. Lett. 11 494
[8] Harb B A and Harb A M 2004 Chaos Solitons & Fractals 19 667
[9] Bernstein G M, Liberman M and Lichtenberg A J 1990 IEEE Trans. Commun. 37 1062
[10] Bernstein G M and Liberman M 1990 IEEE Transactions on Circuits and Systems 37 1157
[11] Tanmoy B and Bishnu C S 2008 AEU-International Journal of Electronics and Communications 62 86
[12] Ding Y and Ye H 2009 Math. Comput. Model. 50 386
[13] Sierociuk D, Skovranek T, Macias M, et al. 2015 Appl. Math. Comput. 257 2
[14] Rajagopal K, Karthikeyan A, Jafari S, Parastesh F, Volos C and Hussain I 2020 Int. J. Mod. Phys. B 34 2050157
[15] Zhou P, Ma J and Tang J 2020 Nonlin. Dyn. 100 2353
[16] Ama N, Martinz F, Matakas L J and Kassab F J 2013 IEEE Trans. Power Electron. 28 144
[17] Leonov G A, Kuznetsov N V, Yuldashev M V and Yuldashev R V 2015 IEEE Transactions on Circuits and Systems I:Regular Papers 62 2454
[18] Kuznetsov N V, Leonov G A, Yuldashev M V and Yuldashev R V 2015 IFAC-PapersOnLine 48 710
[19] Piqueira J R C 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 2328
[20] Piqueira J R C 2017 Commun. Nonlin. Sci. Numer. Simulat. 42 178
[21] Lindsey W C and Chie C M 1981 Proc. IEEE 69 410
[22] Danca M F 2020 Symmetry 12 340
[23] Cheng J 2011 Theory of Fractional Difference Equations (Xiamen:Xiamen University Press)
[24] Wu G C and Baleanu D 2014 Nonlin. Dyn. 75 283
[25] Danca M F, Fečkan M and Kuznetsov N 2019 Nonlin. Dyn.s 98 1219
[26] Bregni S 2002 Synchronization of Digital Telecommunications Networks 1st Edn. (Chichester:John Wiley & Sons)
[27] Williard M W 1970 IEEE Trans. Commun. 18 467
[28] Lindsey W C and Kantak A V 1980 IEEE Trans. Commun. 28 1260
[29] Tavazoei M and Haeri M 2009 Automatica 45 1886
[30] Muni S S and Provata A 2020 Nonlin. Dyn. 101 2509
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[7] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[8] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[9] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[10] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[11] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[14] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[15] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
No Suggested Reading articles found!