Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120514    DOI: 10.1088/1674-1056/ac20c7
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Cascade discrete memristive maps for enhancing chaos

Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞)
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  Continuous-time memristor (CM) has been widely used to generate chaotic oscillations. However, discrete memristor (DM) has not been received adequate attention. Motivated by the cascade structure in electronic circuits, this paper introduces a method to cascade discrete memristive maps for generating chaos and hyperchaos. For a discrete-memristor seed map, it can be self-cascaded many times to get more parameters and complex structures, but with larger chaotic areas and Lyapunov exponents. Comparisons of dynamic characteristics between the seed map and cascading maps are explored. Meanwhile, numerical simulation results are verified by the hardware implementation.
Keywords:  chaos      discrete memristor      cascade chaotic system      bifurcation  
Received:  08 July 2021      Revised:  16 August 2021      Accepted manuscript online:  25 August 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  84.32.-y (Passive circuit components)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61801271, 61973200, and 91848206), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019BF007), the Qingdao Science and Technology Plan Project (Grant No. 19-6-2-9-cg), the Elite Project of Shandong University of Science and Technology, the Taishan Scholar Project of Shandong Province of China, and the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents.
Corresponding Authors:  Fang Yuan     E-mail:  yf210yf@163.com

Cite this article: 

Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞) Cascade discrete memristive maps for enhancing chaos 2021 Chin. Phys. B 30 120514

[1] Chua L 2014 Semicond. Sci. Tech. 29 104001
[2] Gu W Y, Wang G Y, Dong Y J and Ying J J 2020 Chin. Phys. B 29 110503
[3] Lai Q, Wan Z Q, Kengne L K, Kuate P D K and Chen C Y 2021 IEEE T. Circuits-II 68 2197
[4] Deng Y and Li Y X 2021 Chaos 31 043103
[5] Xue W H, Ci W J, Xu X H and Liu G 2020 Chin. Phys. B 29 048401
[6] Zhou Y, Hu X F, Wang L D and Duan S K. 2021 Sci. China-Inform. Sci. 64 160408
[7] Sahu D P, Jetty P and Jammalamadaka S N 2021 Nanotechnol. 32 155701
[8] Parit A K, Yadav M S, Gupta A K, Mikhaylov A and Rawat B 2021 Chaos Soliton. Fract. 145 110818
[9] Ushakov Y, Balanov A and Savel'ev S 2021 Chaos Soliton. Fract. 145 110803
[10] He S B, Sun K H and Wu X M 2020 Phys. Scr. 95 035220
[11] Shi Q Y, Huang X, Yuan F and Li Y X 2021 Chin. Phys. B 30 020507
[12] Gu W Y, Wang G Y, Dong Y J and Ying J J 2020 Chin. Phys. B 29 110503
[13] Chen J J, Yan D W, Duan S K and Wang L D 2020 Chin. Phys. B 29 110504
[14] Ouannas A, Khennaoui A A, Momani S, Pham V T and El-Khazali R 2020 Chin. Phys. B 29 050504
[15] Wu H G, Bao H, Xu Q and Chen M 2019 Complexity 2019 3687635
[16] Wang F P and Wang F Q 2020 Chin. Phys. B 29 058502
[17] Wu H G, Ye Y, Chen M, Xu Q and Bao B C 2019 IEEE Access 7 145022
[18] Hua Z Y and Zhou Y C 2021 IEEE T. Syst. Man Cy-s. 51 3713
[19] Li C Q, Lin D D, Lu J H and Hao F 2018 IEEE Multimedia 25 46
[20] Zhao C and Wu B 2021 Chin. Phys. Lett. 38 030502
[21] Zhang J C, Ren W K and Jin N D 2020 Chin. Phys. Lett. 37 090501
[22] Wu H G, Ye Y, Bao B C, Chen M and Xu Q 2019 Chaos Soliton. Fract. 121 178
[23] Bao B C, Bao H, Wang N, Chen M and Xu Q 2017 Chaos Soliton. Fract. 94 102
[24] Gu M Y, Wang G Y, Liu J B, Liang Y, Dong Y J and Ying J J 2021 Int. J. Bifurcat. Chaos 31 2130018
[25] Bao B C, Zhu Y X, Ma J, Bao H, Wu H G and Chen M 2021 Sci. China-Technol. Sci. 64 1107
[26] Yuan F, Li Y X and Wang G Y 2021 Chaos 31 021102
[27] Yuan F, Deng Y, Li Y X and Chen G R 2019 Chaos 29 053120
[28] Chua L O and Kang S M 1976 Proc. IEEE 64 209
[29] Peng Y X, He S B and Sun K H 2021 Results Phys. 24 104106
[30] Peng Y X, He S B and Sun K H 2021 AEU-Int. J. Electron. Commun. 129 153539
[31] He S B, Sun K H, Peng Y X and Wang L 2020 AIP Adv. 10 015332
[32] Peng Y X, Sun K H and He S B 2020 Chaos Soliton. Fract. 137 109873
[33] Bao B C, Li H Z, Wu H G, Zhang X and Chen M 2020 Electron. Lett. 56 769
[34] Li H Z, Hua Z Y, Bao H, Zhu L and Bao B C 2020 IEEE Trans. Ind. Electron. 68 9931
[35] Deng Y and Li Y X 2021 Chaos Soliton. Fract. 150 111064
[36] Bao H, Hua Z Y, Li H Z, Chen M and Bao B C 2021 IEEE T. Circuits-I 68 4534
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[6] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[9] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[10] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[11] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[12] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[13] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[14] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[15] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
No Suggested Reading articles found!