Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114207    DOI: 10.1088/1674-1056/ac0785
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube

Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳)
School of Mathematics and Physics, Anqing Normal University, Anqing 246133, China
Abstract  The effects of inner nanowire radius, shell thickness, the dielectric functions of middle layer and surrounding medium on localized surface plasmon resonance (LSPR) of gold-dielectric-silver nanotube are studied based on the quasi-static approximation. Theoretical calculation results show that LSPR of gold-dielectric-silver nanotube and LSPR numbers can be well optimized by adjusting its geometrical parameters. The longer wavelength of $\left|\omega_{-}^{-}\right\rangle$ mode takes place a distinct red-shift with increasing the inner nanowire radius and the thickness of middle dielectric layer, while a blue-shift with increasing outer nanotube thickness. The physical mechanisms are explained based on the plasmon hybridization theory, induced charges and phase retardation. In addition, the effects of middle dielectric function and surrounding medium on LSPR, and the local electric field factor are also reported. Our study provides the potential applications of gold-dielectric-silver nanotube in biological tissues, sensor and related regions.
Keywords:  localized surface plasmon resonance      gold-dielectric-silver nanotube      quasi-static approximation      plasmon hybridization theory  
Received:  03 February 2021      Revised:  06 April 2021      Accepted manuscript online:  03 June 2021
PACS:  42.25.-p (Wave optics)  
  42.70.-a (Optical materials)  
  77.84.Lf (Composite materials)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the Programs for Anhui Provincial Natural Science Foundation, China (Grant Nos. 1808085MA20 and 1808085MA05), Excellent Young Talents in University of Anhui Province, China (Grant No. gxyq2017027), the Key Scientific Research Foundation of Anhui Provincial Education Department, China (Grant Nos. KJ2019A0564 and KJ2018A0366), the Key Research and Development Projects of Anhui Province, China (Grant No. 202004f06020021), and Higher Educational Quality Engineering Projects of Anhui Province, China (Grant Nos. 2020szsfkc0540, 2020szsfkc0548, 2020jyxm1080, and aqnu2019jyzc066).
Corresponding Authors:  Ye-Wan Ma     E-mail:  mayewan@126.com

Cite this article: 

Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳) Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube 2021 Chin. Phys. B 30 114207

[1] Sharma R, Roopak S, Pathak N K, Ji A and Sharma R P 2017 Plasmonics 12 977
[2] Nie S and Enmory S R 1997 Science 275 1102
[3] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
[4] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[5] Wang B L 2020 Chin. Phys. B 29 045202
[6] Maier S A 2007 Plasmonics: Fundamentals and Application (Berlin: Springer) p. 65
[7] Xia X H, Liu Y and Ameer G A 2006 Nanotechnology 17 5435
[8] Prodan E, Radbloff C, Halas N J and Nordander P 2003 Science 302 419
[9] Radloff C and Halas N J 2004 Nano Lett. 4 1323
[10] Wang X X, Zhu J K, Xu Y Q, Qi Y P, Zhang L P, Yang H and Yi Z 2021 Chin. Phys. B 30 024207
[11] Debela S, Mesfinb B and Senbetab T 2019 Photon. Nanostruct: Fundam. Appl. 33 48
[12] Wu D J and Liu X J 2010 Appl. Phys. Lett. 97 061904
[13] Schirzaditabar F and Saliminasab M 2013 Phys. Plasmas 20 082102
[14] Schirzaditabar F, Saliminasab M and Nia B A 2014 Phys. Plasmas 21 072102
[15] Bahari A and Amraie E 2012 Phys. Plasmas 19 114502
[16] Zhu J, Li X, L J J and Zhao J W 2018 Spectrochimica Acta-Part A 189 571
[17] Gao S Y, Li P B and Li F L 2013 Appl. Phys. Lett. 102 123107
[18] Penã-Rodríguez O and Pal U 2010 J. Phys. Chem. C 114 4414
[19] Moradi A 2012 J. Opt. Soc. Am. B 29 625
[20] Zhu J, Li J J and Zhao J W 2013 J. Phys. Chem. C 117 584
[21] Daneshfar N 2015 J. Appl. Phys. 117 123105
[22] Wu X J, Dou C, Xu W, Zhang G B, Tian R L and Liu H L 2019 Chin. Phys. B 28 014204
[23] Wu Z W, Ma Y W, Zhang L H, Yin X C and Yi M F 2019 Opt. Commun. 439 68
[24] Haus J W, Zhou H S, Takami S, Hirasawa M, Honma I and Komiyama H 1993 J. Appl. Phys. 739 1043
[25] Bohren C F and Huffman D R 2000 Absorption and Scattering of Light by Small Particles (New York: Wiley) p. 130
[26] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer) p. 160
[27] Johnson P B and Christy R W 1972 Phys. Rev. B 12 4370
[28] Prodan E and Nordander P 2004 J. Chem. Phys. 120 5444
[29] Larsson E M, Alegret J, Kall M and Sutherland D S 2007 Nano Lett. 7 1256
[30] Deeb C, Zhou X, Gérard D, Bouhelier A, Jain P K, Plain J, Soppera O, Royer P and Bachelot R 2011 J. Phys. Chem. Lett. 2 7
[31] Zhu J, Ren Y J and Zhao S M 2012 Sensors and Actuators B: Chemical 161 1129
[32] Sekhon J S and Verma S S 2012 J. Mater. Sci. 47 1930
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[3] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[4] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[5] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[6] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[7] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[8] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[9] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[10] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
[11] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
[12] Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy
Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平). Chin. Phys. B, 2014, 23(9): 097303.
[13] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
[14] High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice
Chen Li (陈立), Wei Hong (魏红), Chen Ke-Qiu (陈克求), Xu Hong-Xing (徐红星). Chin. Phys. B, 2014, 23(2): 027303.
[15] Influence of polarization direction, incidence angle, and geometry on near-field enhancement in two-layered gold nanowires
Wu Da-Jian(吴大建), Jiang Shu-Min(蒋书敏), and Liu Xiao-Jun(刘晓峻) . Chin. Phys. B, 2012, 21(7): 077803.
No Suggested Reading articles found!