Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹)1, Qing Wang(王青)2, and Jian Jing(荆坚)1,†
1 Department of Physics and Electronic, Beijing University of Chemical Technology, Beijing 100029, China; 2 College of Physics and Technology, Xinjiang University, Urumqi 830046, China
Abstract The supersymmetric properties of a charged planar Dirac oscillator coupling to a uniform perpendicular magnetic field are studied. We find that there is an N=2 supersymmetric structure in both commutative and noncommutative cases. We construct the generators of the supersymmetric algebras explicitly and show that the generators of the supersymmetric algebras can be mapped onto ones which only contain the left or right-handed chiral phonons by unitary transformations.
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚) Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces 2021 Chin. Phys. B 30 110307
[1] Ito D, Mori K and Carriere E 1967 Nuovo Cimento A51 1119 [2] Moshinsky M and Szczepaniak A 1989 J. Phys. A22 L817 [3] Strange P 1998 Relativistic Quantum Mechanics (Cambridge: Cambridge University Press) pp. 269-279 [4] Quesne C and Moshinsky M 1990 J. Phys. A23 2263 [5] Sadurn E, Torres J M and Seligman T H 2010 J. Phys. A43 285204 [6] de Lange O L 1991 J. Math. Phys.32 1296 [7] Mandal B P and Verma S 2010 Phys. Lett. A374 1201 [8] Grineviciute J and Halderson D 2012 Phys. Rev. C85 054617 [9] Romera E 2011 Phys. Rev. A84 052102 [10] Franco-Villafane J A, Sadurni E, Barkhofen S, Kuhl U, Mortessagne F and Seligman T H 2013 Phys. Rev. Lett.111 170405 [11] Sadurnf E, Seligman T H and Mortessagne F 2010 New. J. Phys.12 053014 [12] Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. A76 041801 [13] Jaynes E T and Cummings F W 1963 Proc. IEEE51 89 [14] Bermudez A, Martin-Delgado M A and Luis A 2008 Phys. Rev. A77 063815 [15] Sachdev S 2000 Quantum Phase Transitions 2edn. (Springer) p. 5 [16] Hou Y L, Wang Q, Long Z W and Jing J 2015 Int. J. Theor. Phys.54 1506 [17] Quesne C and Moshinsky M 1990 J. Phys. A: Math. Gen.23 2263 [18] Benitez J, Romero R P M, Nunez H N and Salas-Brito A L 1990 Phys. Rev. Lett.64 1643 [19] Song W Y and Zhang F L 2020 Chin. Phys. Lett.37 050301 [20] Snyder H S 1946 Phys. Rev.71 38 [21] Connes A, Douglas M and Schwarz A S 1998 J. High Energy Phys.1998 003 [22] Seiberg N and Witten E 1999 J. High Energy Phys.1999 032 [23] Douglas M R, Nekrasov N A 2001 Rev. Mod. Phys73 977 [24] Chu C S and Ho P M 1999 Nucl. Phys. B550 151 [25] Chu C S and Ho P M 2000 Nucl. Phys. B568 447 [26] Ardalan H, Arfaei H and Sheikh-Jabbari M M 2000 Nucl. Phys. B576 578 [27] Jing J and Long Z W 2005 Phys. Rev. D72 126002 [28] Jing J 2006 Phys. Rev. D73 086001 [29] Minwalla S, Van Raamsdonk M and Seiberg N 2000 J. High Energy Phys.2000 020 [30] Van Raamsdonk M and Seiberg N 2000 J. High Energy Phys.2000 035 [31] Gopakumar R, Minwalla S and Strominger A 2000 J. High Energy Phys.2000 020 [32] Nair V P and Polychronakos A P 2001 Phys. Lett. B505 267 [33] Morariu B and Polychronakos A P 2001 Nucl. Phys. B610 531 [34] Bellucci S, Nersessian A and Sochichiu C 2001 Phys. Lett. B522 345 [35] Bellucci S and Nersessian A 2002 Phys. Lett. B542 295 [36] Karabali D, Nair V P and Polychronakos A P 2002 Nucl. Phys. B627 565 [37] Morariu B and Polychronakos A P 2002 Nucl. Phys. B634 326 [38] Muthukumar B and Mitra P 2002 Phys. Rev. D66 027701 [39] Chaichian M, Sheikh-Jabbari M M and Tureanu A 2001 Phys. Rev. Lett.86 2716 [40] Adorno T C, Baldiotti M C, Chaichian M, Gitman D M and Tureanu A 2009 Phys. Lett. B682 235 [41] Acatrinei C 2001 J. High Energy Phys.2001 007 [42] Chaichian M, Presnajder P, Sheikh-Jabbari M M and Tureanu A 2002 Phys. Lett. B527 149 [43] Chaichian M, Demichev A, Presnajder P, Sheikh-Jabbari M M and Tureanu A 2001 Nucl. Phys. B611 383 [44] Jing J, Liu F H and Chen J F 2008 Phys. Rev. D78 125004 [45] Bastos C, Bernardini E and Bertolami O 2014 Phys. Rev. D90 045023 [46] Bastos C, Bernardini A E and Bertolami O 2015 Phys. Rev. D91 065036 [47] Bastos C, Bernardini A E, Bertolami O, Dias N C and Prata J N 2016 Phys. Rev. D93 104055 [48] Bertolami O and Queiroz R 2011 Phys. Lett. A375 4116 [49] Lin B S and Heng T H 2016 Chin. Phys. Lett.33 110303 [50] Panella1 O and Roy P 2014 Phys. Rev. A90 042111
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.