CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Understanding of impact of carbon doping on background carrier conduction in GaN |
Zhenxing Liu(刘振兴)1, Liuan Li(李柳暗)1, Jinwei Zhang(张津玮)1, Qianshu Wu(吴千树)1, Yapeng Wang(王亚朋)1, Qiuling Qiu(丘秋凌)1, Zhisheng Wu(吴志盛)1, and Yang Liu(刘扬)1,2,† |
1 School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract The impact of carbon doping on the background carrier conduction in GaN has been investigated. It is found that the incorporation of carbon can effectively suppress the n-type background carrier concentration as expected. Moreover, from the fitting of the temperature-dependent carrier concentration and mobility, it is observed that high nitrogen-vacancy (VN) dominates the background carrier at room temperature which consequently results in n-type conduction. The doping agent (carbon atom) occupies the nitrogen site of GaN and forms CN deep acceptor as revealed from photoluminescence. Besides, a relatively low hole concentration is ionized at room temperature which was insufficient for the compensation of n-type background carriers. Therefore, we concluded that this background carrier concentration can be suppressed by carbon doping, which substitutes the N site of GaN and finally decreases the VN.
|
Received: 04 January 2021
Revised: 15 April 2021
Accepted manuscript online: 21 April 2021
|
PACS:
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
72.10.Bg
|
(General formulation of transport theory)
|
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
Fund: Project partially supported by the National Key Research and Development Program of China (Grant No. 2017YFB0402800), the Key Research and Development Program of Guangdong Province, China (Grant No. 2020B010174003), the National Natural Science Foundation of China (Grant No. U1601210), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030312011). |
Corresponding Authors:
Yang Liu
E-mail: liuy69@mail.sysu.edu.cn
|
Cite this article:
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬) Understanding of impact of carbon doping on background carrier conduction in GaN 2021 Chin. Phys. B 30 107201
|
[1] Niraj M S, Yiming L, Tetsuya S and Seiji S 2019 IEEE Trans. Electron Dev. 66 2901719 [2] Gupta C, Lund C, Chan S H, Anchal A, Liu J, Enatsu Y, Keller S and Mishra U K 2017 IEEE Electron Dev. Lett. 38 353 [3] Meyer B K, Volm D, Graber A, Alt H C, Detchprohm T, Amano A and Akasaki I 1995 Solid-State Commun. 95 597 [4] Götz W and Johnson N, Chen M C, Liu H, Kuo C and Imler W 1996 Appl. Phys. Lett. 68 3144 [5] Ganchenkova M G and Nieminen R M 2006 Phys. Rev. Lett. 96 196402 [6] Perlin P, Suski T, Teisseyre H, Leszczynski M, Grzegory I, Jun J, Porowski S, Boguskawski P, Bernholc J, Chervin J C, Polian A and Moustakas T D 1995 Phys. Rev. Lett. 75 296 [7] Mattila T and Nieminen R M 1997 Phys. Rev. B 55 9571 [8] Look D C, Farlow G C, Drevinsky P J, Bliss D F and Sizelove J R 2003 Appl. Phys. Lett. 83 3525 [9] Look D C and Reynolds D C 1996 J. Appl. Phys. 80 2960 [10] Koleske D D, Wickenden A E and Henry R L 2002 J. Crystal Growth 242 55 [11] Polyakov A Y, Smirnov N B, Govorkov A V, Vdovin V I, Markov A V, A Shlensky A, Prebble E, Hanser D, Zavada J M and Pearton S J 2007 J. Vac. Sci. Technol. B 25 436 [12] Iwinska M, Piotrzkowski R, Litwin-Staszewska E, Yu Ivanov V, Teisseyre H, Amilusik M, Lucznik B, Fijalkowski M, Sochacki T, Takekawa N, Murakami H and Bockowski M 2017 J. Crystal Growth 475 121 [13] Li X, Bergsten J, Nilsson D, Danielsson Ö, Pedersen H, Rorsman N, Janzén E and Forsberg U 2015 Appl. Phys. Lett. 107 262105 [14] Ni Y Q, Li L, He L, Que T T, Liu Z X, He L, Wu Z S and Liu Y 2018 Superlattices and Microstructures 120 720 [15] Ni Y Q, Zhou D Q, Chen Z J, Zheng Y, He Z Y, Yang F, Yao Y, Zhou G L, Shen Z, Zhong J, Wu Z S, Zhang B J and Liu Y 2015 Semicond. Sci. Technol. 30 105037 [16] Lundin W V, Zavarin E E, Brunkov P N, Yagovkina M A, Sakharov A V, Sinitsyn M A, Ber B Y, Kazantsev D Y and Tsatsulnikov A F 2016 Technical Physics Letters 42 539 [17] Kato S, Satoh Y, Sasaki H, Masayuki I and Yoshida S 2007 J. Crystal Growth 298 831 [18] Hady Y, Thorsten Z, Gerrit L, Hannes B, Dirk F, Martin E, Michael H, Holger K and Andrei V 2018 IEEE Trans. Electron Dev. 65 2850066 [19] Xu Y, Li Z Q, Yang X L, Shi L, Zhang P, Cao X Z, Nie J F, Wu S H, Zhang J, Feng Y X, Zhang Y, Wang X Q, Ge W K, Xu K and Shen B 2019 Jpn. J. Appl. Phys. 58 090901 [20] Villamin M E, Kondo T and Iwata N 2021 Jpn. J. Appl. Phys. 60 SBBD17) [21] Kozawa T, Kachi T, Kano H and Nagase H 1995 J. Appl. Phys. 77 4389 [22] Kisielowski C, Kruger J, Ruvimov S, Suski T, Ager J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D and Davis R F 1996 Phys. Rev. B 54 17745 [23] Wu S, Yang X L, Zhang H S, Shi L, Zhang Q, Shang Q Y, Qi Z M, Xu Y, Zhang J, Tang N, Wang X Q, Ge W K, Xu K and Shen B 2018 Phys. Rev. Lett. 121 145505 [24] Reshchikov M A, Vorobiov M, Demchenko D O, ÖzgürÜ, Morkoç H, Lesnik A, Hoffmann M P, Hörich F, Dadgar A and Strittmatter A 2018 Phys. Rev. B 98 125207 [25] Lyons J L, Janotti A and Van C G de Walle 2014 Phys. Rev. B 89 035204 [26] Seager C H, Wright A F, Yu J and Götz W 2002 J. Appl. Phys. 92 6553 [27] Jain S C, Willander M, Narayan J and Overstraeten R V 2000 J. Appl. Phys. 87 965 [28] Narita T, Tomita K, Kataoka K, Tokuda Y, Kogiso T, Hikaru Y, Ikarashi N, Iwata K, Nagao M, Sawada N, Horita M, Suda J and Kachi T 2019 Jpn. J. Appl. Phys. 58 SⅡA16 [29] Chini A, Meneghesso G, Meneghini M, FantinF i, Verzellesi G, Patti A and Iucolano F 2016 IEEE Trans. Electron Dev. 63 3473 [30] Remesh N, Mohan N, Raghavan S, Muralidharan R and Nath D N 2020 Trans. Electron Dev. 67 2311 [31] Honda U, Yamada Y, Tokuda Y and Shiojima K 2012 Jpn. J. Appl. Phys. 51 04DF04 [32] Götz W, Walker J, Romano L T, Johnson N M and Molnar R J 1996 MRS Proc. 10 1557 [33] Xu X L, Beling C D, Fung S, Zhao Y W, Sun N F, Sun T N, Zhang Q L, Zhan H H, Sun B Q, Wang J N, Ge W K and Wong P C 1999 Appl. Phys. Lett. 76 125686 [34] Huang Y, Chen X D, Fung S, Beling C D, Ling C C, Wei Z F, Xu S J and Zhi C Y 2000 J. Appl. Phys. 96 1763235 [35] Look D C and Molnar R J 1997 Appl. Phys. Lett. 70 3377 [36] Götz W, Chen C, Liu H, Kuo C and Imler W 1996 Appl. Phys. Lett. 68 3144 [37] Zhu Q S and Sawaki N 2000 Appl. Phys. Lett. 76 126106 [38] Robert M H 1971 Philosophical Magazine 24 1307 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|