Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107201    DOI: 10.1088/1674-1056/abfa0d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Understanding of impact of carbon doping on background carrier conduction in GaN

Zhenxing Liu(刘振兴)1, Liuan Li(李柳暗)1, Jinwei Zhang(张津玮)1, Qianshu Wu(吴千树)1, Yapeng Wang(王亚朋)1, Qiuling Qiu(丘秋凌)1, Zhisheng Wu(吴志盛)1, and Yang Liu(刘扬)1,2,†
1 School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
Abstract  The impact of carbon doping on the background carrier conduction in GaN has been investigated. It is found that the incorporation of carbon can effectively suppress the n-type background carrier concentration as expected. Moreover, from the fitting of the temperature-dependent carrier concentration and mobility, it is observed that high nitrogen-vacancy (VN) dominates the background carrier at room temperature which consequently results in n-type conduction. The doping agent (carbon atom) occupies the nitrogen site of GaN and forms CN deep acceptor as revealed from photoluminescence. Besides, a relatively low hole concentration is ionized at room temperature which was insufficient for the compensation of n-type background carriers. Therefore, we concluded that this background carrier concentration can be suppressed by carbon doping, which substitutes the N site of GaN and finally decreases the VN.
Keywords:  electrical properties and parameters      semiconductor materials      chemical vapor deposition      electronic transport  
Received:  04 January 2021      Revised:  15 April 2021      Accepted manuscript online:  21 April 2021
PACS:  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  72.80.Ey (III-V and II-VI semiconductors)  
  72.10.Bg (General formulation of transport theory)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
Fund: Project partially supported by the National Key Research and Development Program of China (Grant No. 2017YFB0402800), the Key Research and Development Program of Guangdong Province, China (Grant No. 2020B010174003), the National Natural Science Foundation of China (Grant No. U1601210), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030312011).
Corresponding Authors:  Yang Liu     E-mail:  liuy69@mail.sysu.edu.cn

Cite this article: 

Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬) Understanding of impact of carbon doping on background carrier conduction in GaN 2021 Chin. Phys. B 30 107201

[1] Niraj M S, Yiming L, Tetsuya S and Seiji S 2019 IEEE Trans. Electron Dev. 66 2901719
[2] Gupta C, Lund C, Chan S H, Anchal A, Liu J, Enatsu Y, Keller S and Mishra U K 2017 IEEE Electron Dev. Lett. 38 353
[3] Meyer B K, Volm D, Graber A, Alt H C, Detchprohm T, Amano A and Akasaki I 1995 Solid-State Commun. 95 597
[4] Götz W and Johnson N, Chen M C, Liu H, Kuo C and Imler W 1996 Appl. Phys. Lett. 68 3144
[5] Ganchenkova M G and Nieminen R M 2006 Phys. Rev. Lett. 96 196402
[6] Perlin P, Suski T, Teisseyre H, Leszczynski M, Grzegory I, Jun J, Porowski S, Boguskawski P, Bernholc J, Chervin J C, Polian A and Moustakas T D 1995 Phys. Rev. Lett. 75 296
[7] Mattila T and Nieminen R M 1997 Phys. Rev. B 55 9571
[8] Look D C, Farlow G C, Drevinsky P J, Bliss D F and Sizelove J R 2003 Appl. Phys. Lett. 83 3525
[9] Look D C and Reynolds D C 1996 J. Appl. Phys. 80 2960
[10] Koleske D D, Wickenden A E and Henry R L 2002 J. Crystal Growth 242 55
[11] Polyakov A Y, Smirnov N B, Govorkov A V, Vdovin V I, Markov A V, A Shlensky A, Prebble E, Hanser D, Zavada J M and Pearton S J 2007 J. Vac. Sci. Technol. B 25 436
[12] Iwinska M, Piotrzkowski R, Litwin-Staszewska E, Yu Ivanov V, Teisseyre H, Amilusik M, Lucznik B, Fijalkowski M, Sochacki T, Takekawa N, Murakami H and Bockowski M 2017 J. Crystal Growth 475 121
[13] Li X, Bergsten J, Nilsson D, Danielsson Ö, Pedersen H, Rorsman N, Janzén E and Forsberg U 2015 Appl. Phys. Lett. 107 262105
[14] Ni Y Q, Li L, He L, Que T T, Liu Z X, He L, Wu Z S and Liu Y 2018 Superlattices and Microstructures 120 720
[15] Ni Y Q, Zhou D Q, Chen Z J, Zheng Y, He Z Y, Yang F, Yao Y, Zhou G L, Shen Z, Zhong J, Wu Z S, Zhang B J and Liu Y 2015 Semicond. Sci. Technol. 30 105037
[16] Lundin W V, Zavarin E E, Brunkov P N, Yagovkina M A, Sakharov A V, Sinitsyn M A, Ber B Y, Kazantsev D Y and Tsatsulnikov A F 2016 Technical Physics Letters 42 539
[17] Kato S, Satoh Y, Sasaki H, Masayuki I and Yoshida S 2007 J. Crystal Growth 298 831
[18] Hady Y, Thorsten Z, Gerrit L, Hannes B, Dirk F, Martin E, Michael H, Holger K and Andrei V 2018 IEEE Trans. Electron Dev. 65 2850066
[19] Xu Y, Li Z Q, Yang X L, Shi L, Zhang P, Cao X Z, Nie J F, Wu S H, Zhang J, Feng Y X, Zhang Y, Wang X Q, Ge W K, Xu K and Shen B 2019 Jpn. J. Appl. Phys. 58 090901
[20] Villamin M E, Kondo T and Iwata N 2021 Jpn. J. Appl. Phys. 60 SBBD17)
[21] Kozawa T, Kachi T, Kano H and Nagase H 1995 J. Appl. Phys. 77 4389
[22] Kisielowski C, Kruger J, Ruvimov S, Suski T, Ager J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D and Davis R F 1996 Phys. Rev. B 54 17745
[23] Wu S, Yang X L, Zhang H S, Shi L, Zhang Q, Shang Q Y, Qi Z M, Xu Y, Zhang J, Tang N, Wang X Q, Ge W K, Xu K and Shen B 2018 Phys. Rev. Lett. 121 145505
[24] Reshchikov M A, Vorobiov M, Demchenko D O, ÖzgürÜ, Morkoç H, Lesnik A, Hoffmann M P, Hörich F, Dadgar A and Strittmatter A 2018 Phys. Rev. B 98 125207
[25] Lyons J L, Janotti A and Van C G de Walle 2014 Phys. Rev. B 89 035204
[26] Seager C H, Wright A F, Yu J and Götz W 2002 J. Appl. Phys. 92 6553
[27] Jain S C, Willander M, Narayan J and Overstraeten R V 2000 J. Appl. Phys. 87 965
[28] Narita T, Tomita K, Kataoka K, Tokuda Y, Kogiso T, Hikaru Y, Ikarashi N, Iwata K, Nagao M, Sawada N, Horita M, Suda J and Kachi T 2019 Jpn. J. Appl. Phys. 58 SⅡA16
[29] Chini A, Meneghesso G, Meneghini M, FantinF i, Verzellesi G, Patti A and Iucolano F 2016 IEEE Trans. Electron Dev. 63 3473
[30] Remesh N, Mohan N, Raghavan S, Muralidharan R and Nath D N 2020 Trans. Electron Dev. 67 2311
[31] Honda U, Yamada Y, Tokuda Y and Shiojima K 2012 Jpn. J. Appl. Phys. 51 04DF04
[32] Götz W, Walker J, Romano L T, Johnson N M and Molnar R J 1996 MRS Proc. 10 1557
[33] Xu X L, Beling C D, Fung S, Zhao Y W, Sun N F, Sun T N, Zhang Q L, Zhan H H, Sun B Q, Wang J N, Ge W K and Wong P C 1999 Appl. Phys. Lett. 76 125686
[34] Huang Y, Chen X D, Fung S, Beling C D, Ling C C, Wei Z F, Xu S J and Zhi C Y 2000 J. Appl. Phys. 96 1763235
[35] Look D C and Molnar R J 1997 Appl. Phys. Lett. 70 3377
[36] Götz W, Chen C, Liu H, Kuo C and Imler W 1996 Appl. Phys. Lett. 68 3144
[37] Zhu Q S and Sawaki N 2000 Appl. Phys. Lett. 76 126106
[38] Robert M H 1971 Philosophical Magazine 24 1307
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[3] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[4] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[7] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[8] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[9] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[10] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[11] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[12] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[13] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[14] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[15] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
No Suggested Reading articles found!