Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104203    DOI: 10.1088/1674-1056/abec32
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam

Xiao-Bo Yang(杨晓波)1,2,3 and Jin Hu(胡进)1,3,†
1 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100195, China;
3 China Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081, China
Abstract  A method of measuring the vortex beam topological charge (TC) is proposed based on a device that can directly extract the plane wave form from the vortex beam in which the different propagation angles of the plane waves are uniquely related to the different TCs. Then the TC can be obtained by simply comparing the energy values perceived by two fixed sensors in the detection location with the help of twin omnidirectional energy absorbers (OEAs). Because the settled detection relies only on the simple quantitative value at two fixed positions, neither pattern recognition nor field analysis procedure is applied, thus allowing faster measurement. Some features of the methodology are investigated, and the numerical simulations verify the feasibility and robustness of the system.
Keywords:  vortex beam      topological charge      settled measurement  
Received:  04 January 2021      Revised:  24 February 2021      Accepted manuscript online:  05 March 2021
PACS:  42.25.-p (Wave optics)  
  42.30.Kq (Fourier optics)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975015, 61575022, and 61421001) and the Beijing Natural Science Foundation, China (Grant No. L191004).
Corresponding Authors:  Jin Hu     E-mail:  bithj@bit.edu.cn

Cite this article: 

Xiao-Bo Yang(杨晓波) and Jin Hu(胡进) Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam 2021 Chin. Phys. B 30 104203

[1] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[2] Dholakia K and Čižmár T 2011 Nat. Photon. 5 335
[3] Grier D G 2003 Nature 424 810
[4] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 042320
[5] Vaziri A, Pan J W, Jennewein T, Weihs G and Zeilinger A 2003 Phys. Rev. Lett. 91 227902
[6] Aiello A, Oemrawsingh S S R, Eliel E R and Woerdman J P 2005 Phys. Rev. A 72 052114
[7] Djordjevic I B 2011 Opt. Express 19 14277
[8] Wang J, Yang J-Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488
[9] Ren Y, Wang Z, Xie G, Li L, Cao Y, Liu C, Liao P, Yan Y, Ahmed N, Zhao Z, Willner A, Ashrafi N, Ashrafi S, Linquist R D, Bock R, Tur M, Molisch A F and Willner A E 2015 Opt. Lett. 40 4210
[10] Li L and Li F 2013 Phys. Rev. E 88 033205
[11] Barbieri C, Tamburini F, Anzolin G, Bianchini A, Mari E, Sponselli A, Umbriaco G, Prasciolu M, Romanato F and Villoresi P 2009 Earth Moon Planet 105 283
[12] Lavery M P J, Speirits F C, Barnett S M and Padgett M J 2013 Science 341 537
[13] Hakobyan D and Brasselet E 2015 Opt. Express 23 31230
[14] Lavery M P J, Barnett S M, Speirits F C and Padgett M J 2014 Optica 1 1
[15] Li X, Tai Y, Lv F and Nie Z 2015 Opt. Commun. 334 235
[16] Ma H, Li X, Tai Y, Li H, Wang J, Tang M, Wang Y, Tang J and Nie Z 2017 Opt. Lett. 42 135
[17] Liu Y and Pu J 2011 Opt. Commun. 284 2424
[18] Bahl M and Senthilkumaran P 2015 Phys. Rev. A 92 013831
[19] Brandão P A and Cavalcanti S B 2016 Phys. Lett. A 380 4013
[20] Guo C S, Lu L L and Wang H T 2009 Opt. Lett. 34 3686
[21] Jian-Long L 2010 Chin. Phys. B 19 104001
[22] Ji Z Y and Zhou G Q 2017 Chin. Phys. B 26 094202
[23] Ghai D P, Senthilkumaran P and Sirohi R S 2009 Opt. Lasers Eng. 47 123
[24] Sztul H I and Alfano R R 2006 Opt. Lett. 31 999
[25] Liu R, Long J, Wang F, Wang Y, Zhang P, Gao H and Li F 2013 J. Opt 15 125712
[26] Fu D, Chen D, Liu R, Wang Y, Gao H, Li F and Zhang P 2015 Opt. Lett. 40 788
[27] Zhu J, Zhang P, Chen D, Liu R, Zhou Y, Wang J, Gao H and Li F 2018 Appl. Opt. 57 B39
[28] Guo C S, Yue S J and Wei G X 2009 Appl. Phys. Lett. 94 231104
[29] Zhao Q, Dong M, Bai Y and Yang Y 2020 Photon. Res. 8 745
[30] Narag J P C and Hermosa N 2019 Phys. Rev. Appl. 11 054025
[31] Dai K, Gao C, Zhong L, Na Q and Wang Q 2015 Opt. Lett. 40 562
[32] Saitoh K, Hasegawa Y, Hirakawa K, Tanaka N and Uchida M 2013 Phys. Rev. Lett. 111 074801
[33] Zheng S and Wang J 2017 Sci. Rep. 7 40781
[34] Guzzinati G, Clark L, Béché A and Verbeeck J 2014 Phys. Rev. A 89 025803
[35] Gao C, Qi X, Liu Y, Xin J and Wang L 2011 Opt. Commun. 284 48
[36] Leach J, Courtial J, Skeldon K, Barnett S M, Franke-Arnold S and Padgett M J 2004 Phys. Rev. Lett. 92 013601
[37] Leach J, Padgett M J, Barnett S M, Franke-Arnold S and Courtial J 2002 Phys. Rev. Lett. 88 257901
[38] Pors J B, Aiello A, Oemrawsingh S S R, van Exter M P, Eliel E R and Woerdman J P 2008 Phys. Rev. A 77 033845
[39] Berkhout G C G, Lavery M P J, Padgett M J and Beijersbergen M W 2011 Opt. Lett. 36 1863
[40] Oemrawsingh S S R, Eliel E R, Nienhuis G and Woerdman J P 2004 J. Opt. Soc. Am. A 21 2089
[41] Guo Z Y, Qu S L, Sun Z H and Liu S T 2008 Chin. Phys. B 17 4199
[42] Harris M, Hill C A, Tapster P R and Vaughan J M 1994 Phys. Rev. A 49 3119
[43] Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W and Padgett M J 2010 Phys. Rev. Lett. 105 153601
[44] Lavery M P J, Berkhout G C G, Courtial J and Padgett M J 2011 J. Opt 13 064006
[45] Wen Y, Chremmos I, Chen Y, Zhu J, Zhang Y and Yu S 2018 Phys. Rev. Lett. 120 193904
[46] Prabhakar S, Kumar A, Banerji J and Singh R P 2011 Opt. Lett. 36 4398
[47] Zhang X, Xia T, Cheng S and Tao S 2019 Opt. Commun. 431 238
[48] Han Y and Zhao G 2011 Opt. Lett. 36 2017
[49] Vaity P, Banerji J and Singh R P 2013 Phys. Lett. A 377 1154
[50] Liu A P, Xiong X, Ren X F, Cai Y J, Rui G H, Zhan Q W, Guo G C and Guo G P 2013 Sci. Rep. 3 2402
[51] Zhang Z, Dong F, Qian K, Zhang Q, Chu W, Zhang Y, Ma X and Wu X 2015 Opt. Express 23 20521
[52] Genevet P, Lin J, Kats M A and Capasso F 2012 Nat. Commun. 3 1278
[53] Rui G, Gu B, Cui Y and Zhan Q 2016 Sci. Rep. 6 28262
[54] Abramowitz M and Stegun I A 1948 Handbook of mathematical functions with formulas, graphys, and mathematical tables (US Government Printing Office)
[55] Narimanov E E and Kildishev A V 2009 Appl. Phys. Lett. 95 041106
[56] Chang Z and Hu G 2012 Appl. Phys. Lett. 101 054102
[57] Goodman J W 1996 Introduction to Fourier Optics, 3rd edn. (McGraw-Hill)
[58] Ozaktas H M and Mendlovic D 1995 J. Opt. Soc. Am. A 12 743
[59] Yang X and Hu J 2018 Opt. Express 26 27528
[60] Eberhard Z 2004 Oxford users' guide to mathematics (Oxford University Press)
[61] Cheng Q, Cui T J, Jiang W X and Cai B G 2010 New J. Phys. 12 063006
[62] Wang H W and Chen L W 2011 J. Appl. Phys. 109 103104
[63] Lu W, Jin J, Lin Z and Chen H 2010 J. Appl. Phys. 108 064517
[64] Jonušauskas L, Gailevičius D, Rekštytė S, Baldacchini T, Juodkazis S and Malinauskas M 2018 Opt. Express 27 15205
[65] Bandyopadhyay A and Heer B 2018 Materials Science and Engineering: R: Reports 129 1
[66] Tian X, Yin M and Li D 2016 RPJ 22 251
[67] Jiang W X, Ge S, Han T, Zhang S, Mehmood M Q, Qiu C W and Cui T J 2016 Adv. Sci. 3 1600022
[68] Yin L, Doyhamboure-Fouquet J, Tian X and Li D 2018 Composites Part B: Engineering 132 178
[1] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[2] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[3] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[4] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[5] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[6] Broadband and high efficiency terahertz metasurfaces for anomalous refraction and vortex beam generation
Wen-Yu Li(李文宇), Ran Sun(孙然), Jing-Yu Liu(刘靖宇), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 108701.
[7] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[8] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[9] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[10] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[11] Properties of off-axis hollow Gaussian-Schell model vortex beam propagating in turbulent atmosphere
Yan-Song Song(宋延嵩), Ke-Yan Dong(董科研), Shuai Chang(常帅), Yan Dong(董岩), Lei Zhang(张雷). Chin. Phys. B, 2020, 29(6): 064213.
[12] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
[13] Paraxial propagation of cosh-Airy vortex beams in chiral medium
Xiao-Jin Yang(杨小锦), Zhen-Sen Wu(吴振森), Tan Qu(屈檀). Chin. Phys. B, 2020, 29(3): 034201.
[14] Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction
Chao-Fan Gong(龚超凡), Jing-Jing Li(李晶晶), Kai Guo(郭凯), Hong-Ping Zhou(周红平)†, and Zhong-Yi Guo(郭忠义)‡. Chin. Phys. B, 2020, 29(10): 104301.
[15] Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media
Jia-Wei Liu(刘佳伟), Hai-Ying Li(李海英), Wei Ding(丁炜), Lu Bai(白璐), Zhen-Sen Wu(吴振森), Zheng-Jun Li(李正军). Chin. Phys. B, 2019, 28(9): 094214.
No Suggested Reading articles found!