CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress |
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永)† |
State Key Laboratory of Metastable Materials Science and Technology&Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract First-principles calculations and Monte Carlo simulations reveal that single-layer and double-layer VX2 (X=Cl, Br) can be tuned from antiferromagnetic (AFM) semiconductors to ferromagnetic (FM) state when biaxial tensile stress is applied. Their ground states are all T phase. The biaxial tensile stress at the phase transition point of the double-layer VX2 is larger than that of the single-layer VX2. The direct band gaps can be also manipulated by biaxial tensile stress as they increases with increasing tensile stress to a critical point and then decreases. The Néel temperature (TN) of double-layer VX2 are higher than that of single-layer. As the stress increases, the TN of all materials tend to increase. The magnetic moment increases with the increase of biaxial tensile stress, and which become insensitive to stress after the phase transition points. Our research provides a method to control the electronic and magnetic properties of VX2 by stress, and the single-layer and double-layer VX2 may have potential applications in nano spintronic devices.
|
Received: 02 April 2021
Revised: 31 May 2021
Accepted manuscript online: 08 June 2021
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
64.60.-i
|
(General studies of phase transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904312 and 11904313), the Project of Hebei Educational Department, China (Grant Nos. ZD2018015 and QN2018012), and the Natural Science Foundation of Hebei Province, China (Grant No. A2019203507). |
Corresponding Authors:
Yong Liu
E-mail: yongliu@ysu.edu.cn
|
Cite this article:
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永) Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress 2021 Chin. Phys. B 30 107305
|
[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [2] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [3] Splendiani A, Sun L, Zhang Y, Li T and Kim J 2010 Nano Lett. 10 1271 [4] Zhao H, Min K and Aluru N R 2009 Nano Lett. 9 3012 [5] Booth T, Geim A K, Jiang D, Khotkevich V V, Morozov S M and Novoselov K S 2005 Proc. Natl. Acad. Sci. USA 102 10451 [6] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [7] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [8] Ueda K, Tabata H and Kawai T 2001 Appl. Phys. Lett. 79 988 [9] Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y and Kawazoe Y 2013 Adv. Funct. Mater. 23 2185 [10] Miró P, Audiffred M and Heine T 2014 Chem. Soc. Rev. 43 6537 [11] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 [12] Chen Z, He J, Zhou P, Na J and Sun L 2015 Comp. Mater. Sci. 110 102 [13] Bastos C M O, Besse R, Silva J L F D and Sipahi G M 2019 Phys. Rev. Mater. 3 044002 [14] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, Mcguire M A and Cobden D H 2017 Nature 546 270 [15] Song T, Cai X, Tu W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T and Watanabe K 2018 Science 360 1214 [16] Wang Z, Ignacio G L, Nicolas U, Martin K, Marco G, Takashi T, Kenji W, Ata I, Enrico G and Morpurgo A F 2018 Nat. Commun. 9 2516 [17] Hirohata A and Takanashi K 2014 J. Phys. D: Appl. Phys. 47, 193001 [18] Candini A, Klyatskaya S, Ruben M, Wernsdorfer W and Affronte M 2011 Nano Lett. 11 2634 [19] Jiang S, Shan J and Mak K F 2018 Nat. Mater. 17 406 [20] Song T, Tu W Y, Carnahan C, Cai X and Xu X 2019 Nano Lett. 19 915 [21] Song Y, Li D, Mi W, Wang X and Cheng Y 2016 J. Phys. Chem. C 120 5618 [22] Rieger W, Metzger T, Angerer H, Dimitrov R, Ambacher O and Stutzmann M 1996 Appl. Phys. Lett. 68 970 [23] Wan K 2006 Appl. Phys. Lett. 88 251910 [24] Frisenda R, Drüppel M, Schmidt R, Michaelis de Vasconcellos S, Perez de Lara D, Bratschitsch R, Rohlfing M and Castellanos-Gomez A 2017 Npj 2D Mater. Appl. 1 10 [25] Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A and Schmidt O G 2010 Nano Lett. 10 3453 [26] Romanov A E, Baker T J, Nakamura S and Speck J S 2006 J. Appl. Phys. 100 023522 [27] Zhu Y, Wang X and Mi W 2019 J. Mater. Chem. C 7 2049 [28] Zhang F, Mi W and Wang X 2020 Adv. Electron. Mater. 6 1900778 [29] Wang H, Eyert V and Schwingenschlgl U 2011 J. Phys.: Condens. Mat. 23 116003 [30] Pei Q, Wang X C, Zou J J and Mi W B 2018 Front. Phys. 013 137105 [31] Hu T, Wan W, Ge Y and Liu Y 2020 J. Magn. Magn. Mater. 497 165941 [32] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702 [33] Hulliger F 1976 Structural Chemistry of Layer-Type Phases (Netherlands: Lévy F) pp. 3-39 [34] Yang H, Kim S W, Chhowalla M and Lee Y H 2015 Nat. Phys. 13 931937 [35] Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H and Xu Z 2016 Nat. Phys. 12 1105 [36] Pen L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G and Fu Y S 2017 Nat. Commun. 8 659 [37] Feng Y, Wu X, Han J and Gao G 2018 J. Mater. Chem. C 6 4087 [38] Vadym V K and Wei H 2017 J. Mater. Chem. C 5 8734 [39] Zhang F, Zhang H, Mi W and Wang X 2020 Phys. Chem. Chem. Phys. 22 8647 [40] Blöchl P E 1994 Phys. Rev. B 50 17953 [41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [42] Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029 [43] Baroni S, Gironcoli S D, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [44] Grimme S, Antony J, Ehrlich S and Krieg S 2010 J. Comput. Chem. 27 1787 [45] Björkman T, Gulans A, Krasheninnikov A V and Nieminen R M 2012 Phys. Rev. Lett. 108 235502 [46] Joe M, Lee H, Alyrk M M, Lee J, Kim S Y, Lee C and Lee J H 2017 J. Phys.: Condens. Matter 29 405801 [47] Siberchicot B, Jobic S, Carteaux V, Gressier P and Ouvrard G 1996 J. Chem. Phys. 100 5863 [48] Yasuda C, Todo S, Hukushima K, Alet F, Keller M, Troyer M and Takayama H 2005 Phys. Rev. Lett. 94 217201 [49] Morin F J 1959 Phys. Rev. Lett. 3 34 [50] Dirac P A M 1950 Can. J. Math. 2 129148 [51] Botana A S and Norman M R 2019 Phys. Rev. Mater. 3 044001 [52] Liu L, Ren X, Xie J, Cheng B, Liu W, An T, Qin H and Hu J 2019 Appl. Surf. Sci. 480 300 [53] Zhou Y, Su Q, Wang Z, Deng H and Zu X 2013 Phys. Chem. Chem. Phys. 15 18464 [54] Lv R, Robinson J A, Schaak R E, Sun D, Sun Y, Mallouk T E and Terrones M 2015 Acc. Chem. Res. 48 56 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|