Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 094202    DOI: 10.1088/1674-1056/abf0fd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency

Abdul Wahab1,2,†
1 National Laboratory for Physical Sciences at Microscale, Shanghai Branch, University of Science and Technology of China, Shanghai 201315, China;
2 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We aim to present a new scheme for high-dimensional atomic microscopy via double electromagnetically induced transparency in a four-level tripod system. For atom-field interaction, we construct a spatially dependent field by superimposing three standing-wave fields (SWFs) in 3D-atom localization. We achieve a high precision and high spatial resolution of an atom localization by appropriately adjusting the system variables such as field intensities and phase shifts. We also see the impact of Doppler shift and show that it dramatically deteriorates the precision of spatial information on 3D-atom localization. We believe that our suggested scheme opens up a fascinating way to improve the atom localization that supplies some practical applications in atom nanolithography, and Bose-Einstein condensation.
Keywords:  electromagnetically induced transparency      transparency windows  
Received:  15 November 2020      Revised:  28 February 2021      Accepted manuscript online:  23 March 2021
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Corresponding Authors:  Abdul Wahab     E-mail:  abdulwahab@mail.ustc.edu.cn,jadoon009@outlook.com

Cite this article: 

Abdul Wahab High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency 2021 Chin. Phys. B 30 094202

[1] Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett. 64 1107
[2] Boller K J, Imamoğlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[3] Wang Z B, Marzlin K P and Sanders B C 2006 Phys. Rev. Lett. 97 063901
[4] MacRae A, Campbell G and Lvovsky A I 2008 Opt. Lett. 33 2659
[5] Alotaibi H M M and Sanders B C 2014 Phys. Rev. A 89 021802
[6] Li S, Yang X, Cao X, Zhang C, Xie C and Wang H 2008 Phys. Rev. Lett. 101 073602
[7] Alotaibi H M M and Sanders B C 2015 Phys. Rev. A 91 043817
[8] Lvovsky A I, Sanders B C and Tittel W 2009 Nat. Photon. 3 706
[9] Joshi A and Xiao M 2005 Phys. Rev. A 71 041801
[10] Alotaibi H M M and Sanders B C 2016 Phys. Rev. A 94 053832
[11] Wang D, Liu C, Xiao C, Zhang J, Alotaibi H M, Sanders B C, Wang L G and Zhu S 2017 Sci. Rep. 7 1
[12] Kapale K T, Qamar S and Zubairy M S 2003 Phys. Rev. A 67 023805
[13] Mompart J, Ahufinger V and Birkl G 2009 Phys. Rev. A 79 053638
[14] Evers J, Qamar S and Zubairy M S 2007 Phys. Rev. A 75 053809
[15] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[16] Phillips W D 1998 Rev. Mod. Phys. 70 721
[17] Johnson K S, Thywissen J H, Dekker N H, Berggren K K, Chu A P, Younkin R and Prentiss M 1998 Science 280 1583
[18] Zhang R, Morrow N, Sapiro R, Berman P and Raithel G 2007 Opt. Commun. 275 311
[19] Berman P R, Raithel G, Zhang R and Malinovsky V S 2005 Phys. Rev. A 72 033415
[20] Le Kien F, Rempe G, Schleich W O and Zubairy M S 1997 Phys. Rev. A 56 2972
[21] Storey P, Collett M and Walls D 1992 Phys. Rev. Lett. 68 472
[22] Kunze S, Dieckmann K and Rempe G 1997 Phys. Rev. Lett. 78 2038
[23] Quadt R, Collett M and Walls D F 1995 Phys. Rev. Lett. 74 351
[24] Thomas J E 1989 Opt. Lett. 14 1186
[25] Stokes K D, Schnurr C, Gardner J R, Marable M, Welch G R and Thomas J E 1991 Phys. Rev. Lett. 67 1997
[26] Qamar S, Zhu S Y and Zubairy M S 2000 Opt. Commun. 176 409
[27] Qamar S, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 61 063806
[28] Sahrai M, Tajalli H, Kapale K T and Zubairy M S 2005 Phys. Rev. A 72 013820
[29] Ghafoor F, Qamar S and Zubairy M S 2002 Phys. Rev. A 65 043819
[30] Li J, Yu R, Liu M, Ding C and Yang X 2011 Phys. Lett. A 375 3978
[31] Wan R G, Zhang T Y and Kou J 2013 Phys. Rev. A 87 043816
[32] Rahmatullah and Qamar S 2013 Phys. Rev. A 88 013846
[33] Ding C, Li J, Zhan Z and Yang X 2011 Phys. Rev. A 83 063834
[34] Hua S and Jiang X 2016 Europhys. Lett. 116 53001
[35] Wang F and Xu J 2016 Chin. Phys. B 25 104201
[36] Ivanov V and Rozhdestvensky Y 2010 Phys. Rev. A 81 033809
[37] Shui T, Wang Z and Yu B 2014 Phys. Lett. A 378 235
[38] Rahmatullah, Wahab A and Qamar S 2014 Laser Phys. Lett. 11 045202
[39] Zeng W, Deng L and Chen A 2018 Open Phys. 16 46
[40] Ivanov V S, Rozhdestvensky Y V and Suominen K A 2014 Phys. Rev. A 90 063802
[41] Zhu Z, Chen A X, Liu S and Yang W X 2016 Phys. Lett. A 380 3956
[42] Hamedi H R and Juzeliūnas G 2016 Phys. Rev. A 94 013842
[43] Zhu Z, Yang W X, Xie X T, Liu S, Liu S and Lee R K 2016 Phys. Rev. A 94 013826
[44] Hong Y, Wang Z and Yu B 2019 J. Opt. Soc. Am. B 36 746
[45] Munir A, Wahab A and Jan M 2020 Chin. Phys. B 29 124204
[46] Wahab A, Rahmatullah and Qamar S 2016 J. Mod. Opt. 63 1059
[47] Song F, Chen J Y, Wang Z P and Yu B L 2018 Front. Phys. 13 134208
[48] Rahmatullah, Chuang Y L, Lee R K and Qamar S 2018 Laser Phys. Lett 15 035202
[49] Wang H, Goorskey D J and Xiao M 2002 J. Mod. Opt 49 335
[50] Steck D A 2016 Alkali D Line Data http://steck.us/alkalidata 83
[51] Chen Y C, Liao Y A, Chiu H Y, Su J J and Yu I A 2001 Phys. Rev. A 64 053806
[52] Uhlenberg G, Dirscherl J and Walther H 2000 Phys. Rev. A 62 063404
[53] Proite N A, Simmons Z J and Yavuz D J 2011 Phys. Rev. A 83 041803
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[10] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[11] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[12] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[13] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[14] Polarization-insensitive complementary metamaterial structure based on graphene for independently tuning multiple transparency windows
Hailong Huang(黄海龙), Hui Xia(夏辉), and Hongjian Li(李宏建). Chin. Phys. B, 2020, 29(11): 114203.
[15] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
No Suggested Reading articles found!