High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab1,2,†
1 National Laboratory for Physical Sciences at Microscale, Shanghai Branch, University of Science and Technology of China, Shanghai 201315, China; 2 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract We aim to present a new scheme for high-dimensional atomic microscopy via double electromagnetically induced transparency in a four-level tripod system. For atom-field interaction, we construct a spatially dependent field by superimposing three standing-wave fields (SWFs) in 3D-atom localization. We achieve a high precision and high spatial resolution of an atom localization by appropriately adjusting the system variables such as field intensities and phase shifts. We also see the impact of Doppler shift and show that it dramatically deteriorates the precision of spatial information on 3D-atom localization. We believe that our suggested scheme opens up a fascinating way to improve the atom localization that supplies some practical applications in atom nanolithography, and Bose-Einstein condensation.
Received: 15 November 2020
Revised: 28 February 2021
Accepted manuscript online: 23 March 2021
PACS:
42.50.Gy
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
Corresponding Authors:
Abdul Wahab
E-mail: abdulwahab@mail.ustc.edu.cn,jadoon009@outlook.com
Cite this article:
Abdul Wahab High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency 2021 Chin. Phys. B 30 094202
[1] Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett.64 1107 [2] Boller K J, Imamoğlu A and Harris S E 1991 Phys. Rev. Lett.66 2593 [3] Wang Z B, Marzlin K P and Sanders B C 2006 Phys. Rev. Lett.97 063901 [4] MacRae A, Campbell G and Lvovsky A I 2008 Opt. Lett.33 2659 [5] Alotaibi H M M and Sanders B C 2014 Phys. Rev. A89 021802 [6] Li S, Yang X, Cao X, Zhang C, Xie C and Wang H 2008 Phys. Rev. Lett.101 073602 [7] Alotaibi H M M and Sanders B C 2015 Phys. Rev. A91 043817 [8] Lvovsky A I, Sanders B C and Tittel W 2009 Nat. Photon.3 706 [9] Joshi A and Xiao M 2005 Phys. Rev. A71 041801 [10] Alotaibi H M M and Sanders B C 2016 Phys. Rev. A94 053832 [11] Wang D, Liu C, Xiao C, Zhang J, Alotaibi H M, Sanders B C, Wang L G and Zhu S 2017 Sci. Rep.7 1 [12] Kapale K T, Qamar S and Zubairy M S 2003 Phys. Rev. A67 023805 [13] Mompart J, Ahufinger V and Birkl G 2009 Phys. Rev. A79 053638 [14] Evers J, Qamar S and Zubairy M S 2007 Phys. Rev. A75 053809 [15] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science269 198 [16] Phillips W D 1998 Rev. Mod. Phys.70 721 [17] Johnson K S, Thywissen J H, Dekker N H, Berggren K K, Chu A P, Younkin R and Prentiss M 1998 Science280 1583 [18] Zhang R, Morrow N, Sapiro R, Berman P and Raithel G 2007 Opt. Commun.275 311 [19] Berman P R, Raithel G, Zhang R and Malinovsky V S 2005 Phys. Rev. A72 033415 [20] Le Kien F, Rempe G, Schleich W O and Zubairy M S 1997 Phys. Rev. A56 2972 [21] Storey P, Collett M and Walls D 1992 Phys. Rev. Lett.68 472 [22] Kunze S, Dieckmann K and Rempe G 1997 Phys. Rev. Lett.78 2038 [23] Quadt R, Collett M and Walls D F 1995 Phys. Rev. Lett.74 351 [24] Thomas J E 1989 Opt. Lett.14 1186 [25] Stokes K D, Schnurr C, Gardner J R, Marable M, Welch G R and Thomas J E 1991 Phys. Rev. Lett.67 1997 [26] Qamar S, Zhu S Y and Zubairy M S 2000 Opt. Commun.176 409 [27] Qamar S, Zhu S Y and Zubairy M S 2000 Phys. Rev. A61 063806 [28] Sahrai M, Tajalli H, Kapale K T and Zubairy M S 2005 Phys. Rev. A72 013820 [29] Ghafoor F, Qamar S and Zubairy M S 2002 Phys. Rev. A65 043819 [30] Li J, Yu R, Liu M, Ding C and Yang X 2011 Phys. Lett. A375 3978 [31] Wan R G, Zhang T Y and Kou J 2013 Phys. Rev. A87 043816 [32] Rahmatullah and Qamar S 2013 Phys. Rev. A88 013846 [33] Ding C, Li J, Zhan Z and Yang X 2011 Phys. Rev. A83 063834 [34] Hua S and Jiang X 2016 Europhys. Lett.116 53001 [35] Wang F and Xu J 2016 Chin. Phys. B25 104201 [36] Ivanov V and Rozhdestvensky Y 2010 Phys. Rev. A81 033809 [37] Shui T, Wang Z and Yu B 2014 Phys. Lett. A378 235 [38] Rahmatullah, Wahab A and Qamar S 2014 Laser Phys. Lett.11 045202 [39] Zeng W, Deng L and Chen A 2018 Open Phys.16 46 [40] Ivanov V S, Rozhdestvensky Y V and Suominen K A 2014 Phys. Rev. A90 063802 [41] Zhu Z, Chen A X, Liu S and Yang W X 2016 Phys. Lett. A380 3956 [42] Hamedi H R and Juzeliūnas G 2016 Phys. Rev. A94 013842 [43] Zhu Z, Yang W X, Xie X T, Liu S, Liu S and Lee R K 2016 Phys. Rev. A94 013826 [44] Hong Y, Wang Z and Yu B 2019 J. Opt. Soc. Am. B36 746 [45] Munir A, Wahab A and Jan M 2020 Chin. Phys. B29 124204 [46] Wahab A, Rahmatullah and Qamar S 2016 J. Mod. Opt.63 1059 [47] Song F, Chen J Y, Wang Z P and Yu B L 2018 Front. Phys.13 134208 [48] Rahmatullah, Chuang Y L, Lee R K and Qamar S 2018 Laser Phys. Lett15 035202 [49] Wang H, Goorskey D J and Xiao M 2002 J. Mod. Opt49 335 [50] Steck D A 2016 Alkali D Line Data http://steck.us/alkalidata 83 [51] Chen Y C, Liao Y A, Chiu H Y, Su J J and Yu I A 2001 Phys. Rev. A64 053806 [52] Uhlenberg G, Dirscherl J and Walther H 2000 Phys. Rev. A62 063404 [53] Proite N A, Simmons Z J and Yavuz D J 2011 Phys. Rev. A83 041803
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.