ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium |
Yingcong Zhang(张颖聪)1, Wenjuan Cai(蔡文娟)1, Xianping Wang(王贤平)1,2,†, Wen Yuan(袁文)1, Cheng Yin(殷澄)3, Jun Li(李俊)4, Haimei Luo(罗海梅)1, and Minghuang Sang(桑明煌)1 |
1 Jiangxi Key Laboratory of Photoelectronics and Telecommunication, Department of Physics, Jiangxi Normal University, Nanchang 330022, China; 2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China; 3 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China; 4 Department of Physics, Jiangxi Normal University Science and Technology College, Nanchang 330022, China |
|
|
Abstract Owing to the enormously enhanced oscillating wave, a minute variation of the incident light intensity will give rise to a change in the dielectric constant of the Kerr nonlinear medium and lead to a bistable reflection with an ultra-low threshold intensity, which is closely related to the angle of incidence and the thickness of the Kerr nonlinear medium. The criterion for the existence of optical bistability is derived. Our bistability scheme is simple and not limited to the TM-polarization.
|
Received: 06 January 2021
Revised: 21 January 2021
Accepted manuscript online: 29 January 2021
|
PACS:
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
42.65.Pc
|
(Optical bistability, multistability, and switching, including local field effects)
|
|
Fund: Projected supported by the Open Fund by State Key Laboratory of Advanced Optical Communication Systems and Networks (Grant No. 2017GZKF18), the National Natural Science Foundation of China (Grant Nos. 12064017, 61765008, 11764020, 11864017, 11804133, and 51567011), the Jiangxi Provincial Natural Science Foundation (Grant No. 20181BAB206034), the Fundamental Research Funds for the Central Universities of China (Grant No. 2017B14914), the Postdoctoral Science Foundation of China (Grant No. 2016M601586), the Science and Technology Project of Changzhou (Grant No. CJ20180048), and Scientific Research Fund of Jiangxi Provincial Education Department (Grant Nos. GJJ150313, GJJ160273, and GJJ170184). |
Corresponding Authors:
Xianping Wang
E-mail: xpwangphysics@gmail.com
|
Cite this article:
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌) Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium 2021 Chin. Phys. B 30 084203
|
[1] Zhang W L and Yu S F 2010 Opt. Commun. 283 2622 [2] Guo Q, Zhao X, Zhao H and Chigrinov V 2015 Opt. Lett. 40 2413 [3] Li Y N, Chen Y Y, Wan R G and Yan H W 2019 Phys. Lett. A 383 2248 [4] Xia X, Zhang X, Xu J and Yang Y 2018 Optik 167 95 [5] Witt A, Wegener M, Klingshirn C, Gnass D and Jäger D 1988 Appl. Phys. Lett. 52 342 [6] Umegaki S, Inoue H and Yoshino T 1981 Appl. Phys. Lett. 38 752 [7] Min C, Wang P, Chen C, Deng Y, Lu Y, Ming H, Ning T, Zhou Y and Yang G 2008 Opt. Lett. 33 869 [8] Bravo-Abad J, Rodriguez A, Bermel P, Johnson S, Joannopoulos J and Soljačić M 2007 Opt. Express 15 16161 [9] Wang F Y, Li G X, Tam H L, Cheah K W and Zhu S N 2008 Appl. Phys. Lett. 92 211109 [10] Azadpour F and Bahari A 2019 Opt. Commun. 437 297 [11] Ikeda K and Fainman Y 2006 Opt. Lett. 31 3486 [12] Zang Z G 2013 Appl. Opt. 52 5701 [13] Zang Z G 2012 Opt. Commun. 285 521 [14] Zang Z G and Zhang Y J 2012 J. Mod. Optic. 59 161 [15] Tang S, Zhu B, Xiao S, Shen J and Zhou L 2014 Opt. Lett. 39 3212 [16] Wang G, Lu H, Liu X, Gong Y and Wang L 2011 Appl. Opt. 50 5287 [17] Wysin G, Simon H and Deck R 1981 Opt. Lett. 6 30 [18] Lu H, Cao Z, Li H and Shen Q 2004 Appl. Phys. Lett. 85 4579 [19] Yu T, Li H, Cao Z, Wang Y, Shen Q and He Y 2008 Opt. Lett. 33 1001 [20] Wang X, Yin C, Li H, Sang M, Yuan W and Cao Z 2013 Opt. Lett. 38 4085 [21] Xu T, Huang L, Yin C, Jin Y, Fang J and Huang M 2014 Appl. Phys. Lett. 105 163703 [22] Yin C, Lu Y, Xu T, Wei D Z, Jin Y L, Fang J H, Wang C N and Huang M Z 2016 J. Raman Spectrosc. 47 560 [23] Dai H, Cao Z, Wang Y, Li H, Sang M, Yuan W, Chen F and Chen X 2016 Sci. Rep. 6 32018 [24] Dai H, Yin C, Xiao Z, Cao Z and Chen X 2019 Phys. Rev. Appl. 11 064055 [25] Giorgetti E, Margheri G, Gelli F, Sottini S, Comoretto D, Cravino A, Cuniberti C, Dell'Erba C, Moggio I and Dellepiane G 2001 Synth. Met. 116 129 [26] Rollke K and Sohler W 1977 IEEE J. Quantum Electron. 13 141 [27] Liu X, Cao Z, Zhu P, Shen Q and Liu X 2006 Phys. Rev. E 73 056617 [28] Zhou H, Chen X, Hou P and Li C F 2008 Opt. Lett. 33 1249 [29] Yuan W, Yin C, Xiao P. Wang X, Sun J, Huang S, Chen X and Cao Z 2011 Microfluid. Nanofluid. 11 781 [30] Wang Y, Cao Z Q, Li H G, Hao J, Yu T Y and Shen Q S 2008 Appl. Phys. Lett. 93 091103 [31] Chen J, Wang P, Wang X, Lu Y, Zheng R, Ming H and Zhan Q 2009 Appl. Phys. Lett. 94 081117 [32] Zhang W L and Yu S F 2010 Opt. Commun. 283 2622 [33] Guo J, Jiang L, Jia Y, Dai X, Xiang Y and Fan D 2017 Opt. Express 25 5972 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|